
Erkki Korpimäki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1242831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alien predators are more dangerous than native predators to prey populations. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1237-1243.	1.2	459
2	Population oscillations of boreal rodents: regulation by mustelid predators leads to chaos. Nature, 1993, 364, 232-235.	13.7	437
3	SMALL-RODENT DYNAMICS AND PREDATION. Ecology, 2001, 82, 1505-1520.	1.5	353
4	Numerical and Functional Responses of Kestrels, Short-Eared Owls, and Long-Eared Owls to Vole Densities. Ecology, 1991, 72, 814-826.	1.5	352
5	Responses of stoats and least weasels to fluctuating food abundances: is the low phase of the vole cycle due to mustelid predation?. Oecologia, 1991, 88, 552-561.	0.9	235
6	EXPERIMENTAL REDUCTION OF PREDATORS REVERSES THE CRASH PHASE OF SMALL-RODENT CYCLES. Ecology, 1998, 79, 2448-2455.	1.5	200
7	Predator–induced synchrony in population oscillations of coexisting small mammal species. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 193-202.	1.2	161
8	Shared predators and indirect trophic interactions: lemming cycles and arctic-nesting geese. Journal of Animal Ecology, 2002, 71, 88-98.	1.3	160
9	DOES MOBILITY OR SEX OF VOLES AFFECT RISK OF PREDATION BY MAMMALIAN PREDATORS?. Ecology, 1998, 79, 226-232.	1.5	158
10	Inter-sexual differences in the immune response of Eurasian kestrel nestlings under food shortage. Ecology Letters, 2002, 5, 95-101.	3.0	152
11	The Puzzles of Population Cycles and Outbreaks of Small Mammals Solved?. BioScience, 2004, 54, 1071.	2.2	151
12	Microtine Rodent Dynamics in Northern Europe: Parameterized Models for the Predator-Prey Interaction. Ecology, 1995, 76, 840-850.	1.5	148
13	FOOD LIMITATION ON BROOD SIZE: EXPERIMENTAL EVIDENCE IN THE EURASIAN KESTREL. Ecology, 1997, 78, 2043-2050.	1.5	140
14	Predator manipulation experiments: impacts on populations of terrestrial vertebrate prey. Ecological Monographs, 2010, 80, 531-546.	2.4	139
15	Birds of prey as limiting factors of gamebird populations in Europe: a review. Biological Reviews, 2005, 80, 171-203.	4.7	138
16	Dynamic effects of predators on cyclic voles: field experimentation and model extrapolation. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 991-997.	1.2	135
17	Specialist and generalist natural enemies as an explanation for geographical gradients in population cycles of northern herbivores. Oikos, 2002, 99, 83-94.	1.2	133
18	Female choice in the kestrel under different availability of mating options. Animal Behaviour, 1992, 43, 659-665.	0.8	131

#	Article	IF	CITATIONS
19	Large-scale spatial dynamics of vole populations in Finland revealed by the breeding success of vole-eating avian predators. Journal of Animal Ecology, 2004, 73, 167-178.	1.3	131
20	Rapid or Delayed Tracking of Multi-Annual Vole Cycles by Avian Predators?. Journal of Animal Ecology, 1994, 63, 619.	1.3	128
21	Fluctuating food supply affects the clutch size of Tengmalm's owl independent of laying date. Oecologia, 1991, 85, 543-552.	0.9	126
22	Are goose nesting success and lemming cycles linked? Interplay between nest density and predators. Oikos, 2001, 93, 388-400.	1.2	123
23	Competitive and Predatory Interactions among Raptors: An Observational and Experimental Study. Ecology, 1996, 77, 1134-1142.	1.5	120
24	Variation in the diet composition of a generalist predator, the red fox, in relation to season and density of main prey. Acta Oecologica, 2007, 31, 276-281.	0.5	119
25	Ultraviolet vision and foraging in terrestrial vertebrates. Oikos, 2002, 98, 505-511.	1.2	118
26	How wild are wild mammals?. Nature, 2001, 409, 37-38.	13.7	115
27	Reproductive responses of birds to experimental food supplementation: a meta-analysis. Frontiers in Zoology, 2014, 11, 80.	0.9	113
28	WINTER FOOD SUPPLY LIMITS GROWTH OF NORTHERN VOLE POPULATIONS IN THE ABSENCE OF PREDATION. Ecology, 2003, 84, 2108-2118.	1.5	112
29	Female kestrels gain reproductive success by choosing brightly ornamented males. Animal Behaviour, 1994, 47, 443-448.	0.8	110
30	Experimental tests of predation and food hypotheses for population cycles of voles. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 351-356.	1.2	106
31	Effects of feral mink removal on seabirds, waders and passerines on small islands in the Baltic Sea. Biological Conservation, 2003, 109, 359-368.	1.9	106
32	Interactive effects of parental age and environmental variation on the breeding performance of Tengmalm's owls. Journal of Animal Ecology, 2002, 71, 23-31.	1.3	103
33	A melanin-based trait reflects environmental growth conditions of nestling male Eurasian kestrels. Evolutionary Ecology, 2007, 21, 157-171.	0.5	102
34	Do Breeding Nomadic Avian Predators Dampen Population Fluctuations of Small Mammals?. Oikos, 1991, 62, 195.	1.2	101
35	Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate highâ€amplitude cycles. Global Change Biology, 2013, 19, 697-710.	4.2	101
36	Reproductive investment under fluctuating predation risk: Microtine rodents and small mustelids. Evolutionary Ecology, 1994, 8, 357-368.	0.5	99

#	Article	IF	CITATIONS
37	Archiving Primary Data: Solutions for Long-Term Studies. Trends in Ecology and Evolution, 2015, 30, 581-589.	4.2	98
38	Copulatory behaviour and paternity determined by DNA fingerprinting in kestrels: effects of cyclic food abundance. Animal Behaviour, 1996, 51, 945-955.	0.8	93
39	Effects of Territory Quality on Occupancy, Breeding Performance and Breeding Dispersal in Tengmalm's Owl. Journal of Animal Ecology, 1988, 57, 97.	1.3	91
40	Habitat selection as an antipredator behaviour in a multiâ€predator landscape: all enemies are not equal. Journal of Animal Ecology, 2010, 79, 327-333.	1.3	91
41	Microhabitat use and behavior of voles under weasel and raptor predation risk: predator facilitation?. Behavioral Ecology, 1996, 7, 30-34.	1.0	90
42	Fluctuating Food Abundance Determines the Lifetime Reproductive Success of Male Tengmalm's Owls. Journal of Animal Ecology, 1992, 61, 103.	1.3	89
43	Year- and sex-dependent effects of experimental brood sex ratio manipulation on fledging condition of Eurasian kestrels. Journal of Animal Ecology, 2004, 73, 342-352.	1.3	89
44	Environmental- and parental condition-related variation in sex ratio of kestrel broods. Journal of Avian Biology, 2000, 31, 128-134.	0.6	86
45	Avian Predation Risk Modifies Breeding Bird Community on a Farmland Area. Ecology, 1994, 75, 1626-1634.	1.5	85
46	Effects of predator removal on vertebrate prey populations: birds of prey and small mammals. Oecologia, 1995, 103, 241-248.	0.9	85
47	Clutch Size, Breeding Success and Brood Size Experiments in Tengmalm's Owl Aegolius funereus: A Test of Hypotheses. Ornis Scandinavica, 1987, 18, 277.	1.0	84
48	Mobility decisions and the predation risks of reintroduction. Biological Conservation, 2002, 103, 133-138.	1.9	82
49	Diet composition, prey choice, and breeding success of Long-eared Owls: effects of multiannual fluctuations in food abundance. Canadian Journal of Zoology, 1992, 70, 2373-2381.	0.4	80
50	Survival and Natal Dispersal of Fledglings of Tengmalm's Owl in Relation to Fluctuating Food Conditions and Hatching Date. Journal of Animal Ecology, 1988, 57, 433.	1.3	79
51	Selection for Nest-Hole Shift and Tactics of Breeding Dispersal in Tengmalm's Owl Aegolius funerus. Journal of Animal Ecology, 1987, 56, 185.	1.3	77
52	Effects of island isolation and feral mink removal on bird communities on small islands in the Baltic Sea. Journal of Animal Ecology, 2004, 73, 424-433.	1.3	77
53	Blood parasites, sexual selection and reproductive success of European kestrels. Ecoscience, 1995, 2, 335-343.	0.6	75
54	Vole cycles and predation in temperate and boreal zones of Europe. Journal of Animal Ecology, 2005, 74, 1150-1159.	1.3	74

#	Article	IF	CITATIONS
55	Factors promoting polygyny in European birds of prey—a hypothesis. Oecologia, 1988, 77, 278-285.	0.9	73
56	Effects of Age on Breeding Performance of Tengmalm's Owl Aegolius funereus in Western Finland. Ornis Scandinavica, 1988, 19, 21.	1.0	72
57	Risk induced by a native top predator reduces alien mink movements. Journal of Animal Ecology, 2008, 77, 1092-1098.	1.3	72
58	The impact of climate and cyclic food abundance on the timing of breeding and brood size in four boreal owl species. Oecologia, 2011, 165, 349-355.	0.9	72
59	Variable responses of waterfowl breeding populations to long-term removal of introduced American mink. Ecography, 2002, 25, 385-394.	2.1	71
60	The onset of incubation in birds: can females control hatching patterns?. Animal Behaviour, 1998, 55, 1043-1052.	0.8	70
61	Nest box design for the study of diurnal raptors and owls is still an overlooked point in ecological, evolutionary and conservation studies: a review. Journal of Ornithology, 2012, 153, 23-34.	0.5	66
62	Experimental increase of predation risk induces breeding dispersal of Tengmalm's owl. Oecologia, 2001, 126, 355-359.	0.9	64
63	Landscape effects on temporal and spatial properties of vole population fluctuations. Oecologia, 2003, 135, 209-220.	0.9	64
64	Strong seasonality may attenuate trophic cascades: vertebrate predator exclusion in boreal grassland. Oikos, 2002, 99, 419-430.	1.2	63
65	Does Nest-Hole Quality, Poor Breeding Success or Food Depletion Drive the Breeding Dispersal of Tengmalm's Owls?. Journal of Animal Ecology, 1993, 62, 606.	1.3	62
66	Density-dependent vole damage in silviculture and associated economic losses at a nationwide scale. Forest Ecology and Management, 2009, 258, 1219-1224.	1.4	62
67	Small Mustelid Predation Slows Population Growth of Microtus Voles: A Predator Reduction Experiment. Journal of Animal Ecology, 1997, 66, 607.	1.3	61
68	Determinants of parental effort: a behavioural study in the Eurasian kestrel, Falco tinnunculus. Behavioral Ecology and Sociobiology, 1994, 35, 355-362.	0.6	60
69	Nest defence of Tengmalm's owls reflects offspring survival prospects under fluctuating food conditions. Animal Behaviour, 1994, 48, 843-849.	0.8	60
70	Do nomadic avian predators synchronize population fluctuations of small mammals? a field experiment. Oecologia, 1996, 107, 478-483.	0.9	59
71	Breeding performance of Tengmalm's Owl Aegolius funereus: effects of supplementary feeding in a peak vole year. Ibis, 1989, 131, 51-56.	1.0	59
72	Lethal interactions among vertebrate top predators: a review of concepts, assumptions and terminology. Biological Reviews, 2014, 89, 270-283.	4.7	59

#	Article	IF	CITATIONS
73	Diet variation of common buzzards in Finland supports the alternative prey hypothesis. Ecography, 2001, 24, 267-274.	2.1	58
74	Changes in individual quality during a 3-year population cycle of voles. Oecologia, 2002, 130, 239-249.	0.9	58
75	Reproduction of the common buzzard at its northern range margin under climatic change. Oikos, 2009, 118, 829-836.	1.2	58
76	Resource levels, reproduction and resistance to haematozoan infections. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1197-1201.	1.2	57
77	Reversed sexual size dimorphism in raptors: evaluation of the hypotheses in kestrels breeding in a temporally changing environment. Oecologia, 2000, 124, 26-32.	0.9	57
78	The impact of predation risk from small mustelids on prey populations. Mammal Review, 2000, 30, 147-156.	2.2	56
79	Changes in population structure and reproduction during a 3-yr population cycle of voles. Oikos, 2002, 96, 331-345.	1.2	56
80	Competition, predation and interspecific synchrony in cyclic small mammal communities. Ecography, 2004, 27, 197-206.	2.1	56
81	Costs of Reproduction and Success of Manipulated Broods Under Varying Food Conditions in Tengmalm's Owl. Journal of Animal Ecology, 1988, 57, 1027.	1.3	55
82	Body Mass of Breeding Tengmalm's Owls Aegolius funereus: Seasonal, Between-Year, Site and Age-Related Variation. Ornis Scandinavica, 1990, 21, 169.	1.0	55
83	Delayed maturation in plumage colour: Evidence for the female-mimicry hypothesis in the kestrel. Behavioral Ecology and Sociobiology, 1993, 33, 247-251.	0.6	53
84	Parental effort of kestrels (Falco tinnunculus) in nest defense: effects of laying time, brood size, and varying survival prospects of offspring. Behavioral Ecology, 1995, 6, 435-441.	1.0	53
85	Phase dependence in winter physiological condition of cyclic voles. Oikos, 2007, 116, 565-577.	1.2	53
86	Do predators limit the abundance of alternative prey? Experiments with vole-eating avian and mammalian predators. Oikos, 2000, 91, 528-540.	1.2	50
87	Towards a cohesive, holistic view of top predation: a definition, synthesis and perspective. Oikos, 2014, 123, 1234-1243.	1.2	50
88	Variation in clutch size in relation to nest size in birds. Ecology and Evolution, 2014, 4, 3583-3595.	0.8	49
89	Prey choice of Tengmalm's owls (Aegolius funereus funereus): preference for substandard individuals?. Canadian Journal of Zoology, 1996, 74, 816-823.	0.4	48
90	Do delayed effects of overgrazing explain population cycles in voles?. Oikos, 2000, 90, 509-516.	1.2	48

#	Article	IF	CITATIONS
91	Does the Year-to-Year Variation in the Diet of Eagle and Ural Owls Support the Alternative Prey Hypothesis?. Oikos, 1990, 58, 47.	1.2	47
92	Effects of brood size manipulations on offspring and parental survival in the European kestrel under fluctuating food conditions. Ecoscience, 1996, 3, 264-273.	0.6	47
93	Home range size is determined by habitat composition but feeding rate by food availability in male Tengmalm's owls. Animal Behaviour, 2012, 83, 1115-1123.	0.8	47
94	Interspecific variation in the relationship between clutch size, laying date and intensity of urbanization in four species of holeâ€nesting birds. Ecology and Evolution, 2016, 6, 5907-5920.	0.8	47
95	Climate change reshuffles northern species within their niches. Nature Climate Change, 2022, 12, 587-592.	8.1	46
96	Trophic Structure of Raptor Communities: A Three-Continent Comparison and Synthesis. , 1993, , 47-137.		44
97	Gradients in population fluctuations of Tengmalm's owl Aegolius funereus in Europe. Oecologia, 1986, 69, 195-201.	0.9	43
98	Seasonal changes in the numerical responses of predators to cyclic vole populations. Ecography, 2002, 25, 428-438.	2.1	43
99	Predator presence may benefit: kestrels protect curlew nests against nest predators. Oecologia, 1995, 101, 105-109.	0.9	42
100	Do kestrels adjust their parental effort to current or future benefit in a temporally varying environment?. Ecoscience, 1996, 3, 165-172.	0.6	42
101	Timing of breeding of Tengmalm's Owl Aegolius funereus in relation to vole dynamics in western Finland. Ibis, 1987, 129, 58-68.	1.0	41
102	Habitat composition as a determinant of reproductive success of Tengmalm's owls under fluctuating food conditions. Oikos, 2003, 100, 162-171.	1.2	41
103	Mammalian nest predator feces as a cue in avian habitat selection decisions. Behavioral Ecology, 2013, 24, 262-266.	1.0	41
104	Hatching asynchrony in the Eurasian kestrel Falco tinnunculus: an experimental test of the brood reduction hypothesis. Journal of Animal Ecology, 2000, 69, 85-95.	1.3	40
105	Do scent marks increase predation risk of microtine rodents?. Oikos, 2001, 95, 275-281.	1.2	40
106	Sex-Specific Recruitment and Brood Sex Ratios of Eurasian Kestrels in a Seasonally and Annually Fluctuating Northern Environment. Evolutionary Ecology, 2004, 18, 215-230.	0.5	40
107	Alien mink predation induces prolonged declines in archipelago amphibians. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1261-1265.	1.2	39
108	Mechanisms and reproductive consequences of breeding dispersal in a specialist predator under temporally varying food conditions. Oikos, 2015, 124, 762-771.	1.2	39

#	Article	IF	CITATIONS
109	Reproductive success and parental effort of Tengmalm's owls: Effects of spatial and temporal variation in habitat quality. Ecoscience, 1997, 4, 35-42.	0.6	38
110	Blood parasites and nest defense behaviour of Tengmalm's owls. Oecologia, 1998, 114, 574-577.	0.9	38
111	Assessing the Effects of Climate on Host-Parasite Interactions: A Comparative Study of European Birds and Their Parasites. PLoS ONE, 2013, 8, e82886.	1.1	38
112	Hatching asynchrony in Eurasian kestrels in relation to the abundance and predictability of cyclic prey. Journal of Animal Ecology, 1998, 67, 908-917.	1.3	37
113	Diet variation of common buzzards in Finland supports the alternative prey hypothesis. Ecography, 2001, 24, 267-274.	2.1	37
114	Inter-clutch egg size variation in kestrels Falco tinnunculus : seasonal decline under fluctuating food conditions. Journal of Avian Biology, 2002, 33, 426-432.	0.6	37
115	Vole cycles and predation. Trends in Ecology and Evolution, 2003, 18, 494-495.	4.2	37
116	Dynamic impacts of feral mink predation on vole metapopulations in the outer archipelago of the Baltic Sea. Oikos, 2004, 105, 79-88.	1.2	37
117	Public information revealed by pellets in nest sites is more important than ecto-parasite avoidance in the settlement decisions of Eurasian kestrels. Behavioral Ecology and Sociobiology, 2014, 68, 2023-2034.	0.6	37
118	Predator–vole interactions in northern Europe: the role of small mustelids revised. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20142119.	1.2	37
119	Does feeding effort of Tengmalm's owls reflect offspring survival prospects in cyclic food conditions?. Oecologia, 1994, 97, 209-214.	0.9	36
120	Mating system and mate choice of Tengmalm's Owls Aegolius funereus. Ibis, 1989, 131, 41-50.	1.0	36
121	The predation risks of interspecific eavesdropping: weasel-vole interactions. Oikos, 2010, 119, 1210-1216.	1.2	36
122	Clutchâ€size variation in Western Palaearctic secondary holeâ€nesting passerine birds in relation to nest box design. Methods in Ecology and Evolution, 2014, 5, 353-362.	2.2	36
123	Poor reproductive success of polygynously mated female Tengmalm's owls: are better options available?. Animal Behaviour, 1991, 41, 37-47.	0.8	34
124	Do Tengmalm's owls see vole scent marks visible in ultraviolet light?. Animal Behaviour, 1997, 54, 873-877.	0.8	34
125	Influence of hatching order on growth rate and resting metabolism of kestrel nestlings. Journal of Avian Biology, 2002, 33, 235-244.	0.6	34
126	Prey caching of breeding Tengmalm's Owls Aegolius funereus as a buffer against temporary food shortage. Ibis, 1987, 129, 499-510.	1.0	34

#	Article	IF	CITATIONS
127	Parental Effort and Blood Parasitism in Tengmalm's Owl: Effects of Natural and Experimental Variation in Food Abundance. Oikos, 1999, 86, 79.	1.2	33
128	Delayed numerical response of goshawks to population fluctuations of forest grouse. Oikos, 2005, 111, 408-415.	1.2	32
129	Mate Choice and Reproductive Success in the American Kestrel: a Role for Blood Parasites?. Ethology, 1997, 103, 304-317.	0.5	32
130	Competitors and predators alter settlement patterns and reproductive success of an intraguild prey. Ecological Monographs, 2017, 87, 4-20.	2.4	32
131	Differences in the intensity of nest predation in the curlew <i>Numenius arquata</i> : A consequence of land use and predator densities?. Ecoscience, 1999, 6, 497-504.	0.6	31
132	Functional response of the least weasel, Mustela nivalis nivalis. Oikos, 2000, 90, 501-508.	1.2	31
133	Hatching asynchrony and brood reduction in Tengmalm's owl Aegolius funereus: the role of temporal and spatial variation in food abundance. Oecologia, 2002, 133, 334-341.	0.9	31
134	Lifetime reproduction of a forest–dwelling owl increases with age and area of forests. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S461-4.	1.2	31
135	Survival of male Tengmalm's owls under temporally varying food conditions. Oecologia, 2002, 131, 83-88.	0.9	30
136	Breeding dispersal of Eurasian kestrels Falco tinnunculus under temporally fluctuating food abundance. Journal of Avian Biology, 2011, 42, 552-563.	0.6	30
137	Food abundance and weather modify reproduction of two arboreal squirrel species. Journal of Mammalogy, 2016, 97, 1376-1384.	0.6	30
138	Landscape homogenization due to agricultural intensification disrupts the relationship between reproductive success and main prey abundance in an avian predator. Frontiers in Zoology, 2019, 16, 31.	0.9	30
139	Immediate or lagged responses of a red squirrel population to pulsed resources. Oecologia, 2015, 177, 401-411.	0.9	29
140	Effects of Experimental Brood Size Manipulation and Gender on Carotenoid Levels of Eurasian Kestrels Falco tinnunculus. PLoS ONE, 2008, 3, e2374.	1.1	29
141	Kestrels prefer scent marks according to species and reproductive status of voles. Ecoscience, 1999, 6, 415-420.	0.6	28
142	Do Tengmalm's Owls alter parental feeding effort under varying conditions of main prey availability?. Journal of Ornithology, 2009, 150, 231-237.	0.5	28
143	Sequential polyandry by brood desertion increases female fitness in a bird with obligatory bi-parental care. Behavioral Ecology and Sociobiology, 2011, 65, 1093-1102.	0.6	28
144	Avian top predator and the landscape of fear: responses of mammalian mesopredators to risk imposed by the golden eagle. Ecology and Evolution, 2015, 5, 503-514.	0.8	27

ΕΓΚΚΙ ΚΟΓΡΙΜΑ

#	Article	IF	CITATIONS
145	Rate of population change in voles from different phases of the population cycle. Oikos, 2002, 96, 291-298.	1.2	26
146	Spatial synchrony in vole population fluctuations - a field experiment. Oikos, 2005, 109, 583-593.	1.2	26
147	Survival of male Tengmalm's owls increases with cover of old forest in their territory. Oecologia, 2008, 155, 479-486.	0.9	26
148	SMALL-RODENT DYNAMICS AND PREDATION. , 2001, 82, 1505.		25
149	Experimental Reduction of Predators Reverses the Crash Phase of Small-Rodent Cycles. Ecology, 1998, 79, 2448.	1.5	24
150	Coping with fast climate change in northern ecosystems: mechanisms underlying the populationâ€level response of a specialist avian predator. Ecography, 2015, 38, 690-699.	2.1	24
151	Dark or Short Nights: Differential Latitudinal Constraints in Nestling Provisioning Patterns of a Nocturnally Hunting Bird Species. PLoS ONE, 2012, 7, e36932.	1.1	24
152	Body reserves and unpredictable breeding conditions in the Eurasian kestrel, <i>Falco tinnunculus</i> . Ecoscience, 1999, 6, 406-414.	0.6	23
153	Spatial dynamics of Microtus vole populations in continuous and fragmented agricultural landscapes. Oecologia, 2008, 155, 53-61.	0.9	23
154	Environmental, parental and adaptive variation in egg size of Tengmalm's owls under fluctuating food conditions. Oecologia, 1994, 98, 362-368.	0.9	22
155	Variation in eggshell traits between geographically distant populations of pied flycatchers Ficedula hypoleuca. Journal of Avian Biology, 2013, 44, 111-120.	0.6	22
156	Increased autumn rainfall disrupts predator–prey interactions in fragmented boreal forests. Global Change Biology, 2017, 23, 1361-1373.	4.2	22
157	Refuge sites of voles under owl predation risk: priority of dominant individuals?. Behavioral Ecology, 1998, 9, 261-266.	1.0	21
158	Predator-induced changes in population structure and individual quality ofMicrotusvoles: a large-scale field experiment. Oikos, 2004, 105, 312-324.	1.2	21
159	Reproductive responses of temperate and boreal Tengmalm's Owl <i>Aegolius funereus</i> populations to spatial and temporal variation in prey availability. Ibis, 2015, 157, 369-383.	1.0	21
160	Sex roles, parental effort and offspring desertion in the monogamous Eurasian Curlew <i>Numenius arquata</i> . Ibis, 2001, 143, 642-650.	1.0	20
161	CONVERGENT EVOLUTION OF ELANUS KITES AND THE OWLS. Journal of Raptor Research, 2006, 40, 222-225.	0.2	20
162	Evaluating the influence of dietâ€related variables on breeding performance and home range behaviour of a top predator. Population Ecology, 2015, 57, 625-636.	0.7	20

ΕΓΚΚΙ ΚΟΓΡΙΜΑ

#	Article	IF	CITATIONS
163	Tree cavity abundance and beyond: Nesting and food storing sites of the pygmy owl in managed boreal forests. Forest Ecology and Management, 2020, 460, 117818.	1.4	19
164	Niche Relationships and Life-History Tactics of Three Sympatric Strix Owl Species in Finland. Ornis Scandinavica, 1986, 17, 126.	1.0	18
165	Interspecific competition limits larders of pygmy owls Glaucidium passerinum. Journal of Avian Biology, 2007, 38, 630-634.	0.6	18
166	Clutch size and breeding success in relation to nest-box size in Tengmalm's owl Aegolius funereus. Ecography, 1985, 8, 175-180.	2.1	17
167	Reduced nest defence intensity and improved breeding success in terns as responses to removal of non-native American mink. Behavioral Ecology and Sociobiology, 2004, 55, 454-460.	0.6	17
168	Behavioural responses of voles to simulated risk of predation by a native and an alien mustelid: an odour manipulation experiment. Wildlife Research, 2010, 37, 273.	0.7	16
169	Vulnerability of black grouse hens to goshawk predation: result of food supply or predation facilitation?. Oecologia, 2011, 166, 577-584.	0.9	16
170	Food supplementation and predation risk in harsh climate: interactive effects on abundance and body condition of tit species. Oikos, 2017, 126, 863-873.	1.2	16
171	Low heritability in morphological characters of Tengmalm's owls: The role of cyclic food and laying date?. Evolutionary Ecology, 1996, 10, 207-219.	0.5	15
172	Geographical trends in the yolk carotenoid composition of the pied flycatcher (Ficedula hypoleuca). Oecologia, 2011, 165, 277-287.	0.9	15
173	Interspecific competition limits larders of pygmy owls Glaucidium passerinum. Journal of Avian Biology, 2007, 38, 630-634.	0.6	15
174	Why do territorial male Tengmalm's owls fail to obtain a mate?. Oecologia, 1998, 114, 578-582.	0.9	14
175	Does removal of an alien predator from small islands in the Baltic Sea induce a trophic cascade?. Ecography, 2009, 32, 546-552.	2.1	14
176	What Explains Forest Grouse Mortality: Predation Impacts of Raptors, Vole Abundance, or Weather Conditions?. International Journal of Ecology, 2012, 2012, 1-10.	0.3	14
177	Predator–rodent–plant interactions along a coast–inland gradient in Fennoscandian tundra. Ecography, 2016, 39, 871-883.	2.1	14
178	Does avian predation risk depress reproduction of voles?. Oecologia, 1998, 115, 149-153.	0.9	13
179	Higher nest predation risk in association with a top predator: mesopredator attraction?. Oecologia, 2012, 170, 507-515.	0.9	13
180	Plasticity in incubation behaviour under experimentally prolonged vulnerability to nest predation. Behaviour, 2013, 150, 1767-1786.	0.4	13

#	Article	IF	CITATIONS
181	Multiple predators induce risk reduction in coexisting vole species. Oikos, 2009, 118, 1421-1429.	1.2	12
182	Effects of Home-Range Characteristics on the Diet Composition of Female American Mink in the Baltic Sea Archipelago. Annales Zoologici Fennici, 2010, 47, 111-122.	0.2	12
183	Predation risk affects the levels of maternal immune factors in avian eggs. Journal of Avian Biology, 2013, 44, 427-436.	0.6	12
184	Predation risk landscape modifies flying and red squirrel nest site occupancy independently of habitat amount. PLoS ONE, 2018, 13, e0194624.	1.1	12
185	Varying impacts of cervid, hare and vole browsing on growth and survival of boreal tree seedlings. Oecologia, 2014, 174, 271-281.	0.9	11
186	Food hoarding of an avian predator: sex- and age-related differences under fluctuating food conditions. Behavioral Ecology and Sociobiology, 2018, 72, 1.	0.6	11
187	Age and sex differences in numerical responses, dietary shifts, and total responses of a generalist predator to population dynamics of main prey. Oecologia, 2020, 192, 699-711.	0.9	11
188	Smaller Microtus vole species competitively superior in the absence of predators. Oikos, 2007, 116, 156-162.	1.2	10
189	Voles on small islands: effects of food limitation and alien predation. Oecologia, 2008, 157, 419-428.	0.9	10
190	Speciesâ€specific limitation of vole population growth by least weasel predation: facilitation of coexistence?. Oikos, 2008, 117, 6-12.	1.2	10
191	Brood size manipulations in a spatially and temporally varying environment: male Tengmalm's owls pass increased reproductive costs to offspring. Oecologia, 2014, 176, 423-430.	0.9	10
192	Factors Affecting the Duration of Nestling Period and Fledging Order in Tengmalm's Owl (Aegolius) Tj ETQq0	0.0 _{1.1} rgBT	/Oyerlock 10
193	Solutions for Archiving Data in Long-Term Studies: A Reply to Whitlock et al Trends in Ecology and Evolution, 2016, 31, 85-87.	4.2	10
194	Guardian or threat: does golden eagle predation risk have cascading effects on forest grouse?. Oecologia, 2016, 182, 487-498.	0.9	9
195	Food supplementation, but not predation risk, alters female antioxidant status during breeding. Behavioral Ecology and Sociobiology, 2017, 71, 1.	0.6	9
196	Clear ut areas and breeding success of Tengmalm's owls <i>Aegolius funereus</i> . Wildlife Biology, 1996, 2, 253-258.	0.6	8
197	Survival Through Bottlenecks of Vole Cycles: Refuge or Chance Events?. Evolutionary Ecology, 2005, 19, 339-361.	0.5	8
198	Habitat-mediated impact of alien mink predation on common frog densities in the outer archipelago of the Baltic Sea. Oecologia, 2010, 163, 405-413.	0.9	8

#	Article	IF	CITATIONS
199	Maternal transfer of androgens in eggs is affected by food supplementation but not by predation risk. Journal of Avian Biology, 2016, 47, 629-641.	0.6	8
200	Interactive influences of fluctuations of main food resources and climate change on long-term population decline of Tengmalm's owls in the boreal forest. Scientific Reports, 2020, 10, 20429.	1.6	8
201	Determinants of parental effort: a behavioural study in the Eurasian kestrel, Falco tinnunculus. Behavioral Ecology and Sociobiology, 1994, 35, 355-362.	0.6	8
202	Predator Presence, but not Food Supplementation, Affects Forest Red Squirrels in Winter. Annales Zoologici Fennici, 2016, 53, 183-193.	0.2	7
203	Ilkka Hanski and Small Mammals: from Shrew Metapopulations to Vole and Lemming Cycles. Annales Zoologici Fennici, 2017, 54, 153-162.	0.2	7
204	The difference between generalist and specialist: the effects of wide fluctuations in main food abundance on numbers and reproduction of two coâ€existing predators. Journal of Avian Biology, 2020, 51, .	0.6	7
205	Responses of Owls and Eurasian Kestrels to Spatio-Temporal Variation of Their Main Prey. Ardea, 2009, 97, 646-647.	0.3	6
206	Predation risk in relation to brain size in alternative prey of pygmy owls varies depending on the abundance of main prey. PLoS ONE, 2020, 15, e0236155.	1.1	6
207	Habitat choice of a secondary cavity user indicates higher avoidance of disturbed habitat during breeding than during food-hoarding. Forest Ecology and Management, 2021, 483, 118925.	1.4	6
208	Parental care of kestrels living in stable and varying environmental conditions. Journal of Ethology, 2005, 23, 63-67.	0.4	5
209	Antioxidant Enzyme Activities Vary with Predation Risk and Environmental Conditions in Free-Living Passerine Birds. Physiological and Biochemical Zoology, 2018, 91, 837-848.	0.6	5
210	Climate change and perishable food hoards of an avian predator: Is the freezer still working?. Global Change Biology, 2020, 26, 5414-5430.	4.2	5
211	Long-term trends in the body condition of parents and offspring of Tengmalm's owls under fluctuating food conditions and climate change. Scientific Reports, 2021, 11, 18893.	1.6	5
212	Why do top predators engage in superpredation? From an empirical scenario to a theoretical framework. Oikos, 2018, 127, 1563-1574.	1.2	4
213	Simulated Owl Predation Risk to Voles Modifies Browsing Effects on Tree Seedling Growth. Annales Zoologici Fennici, 2018, 55, 93-101.	0.2	4
214	Molecular Identification of Sarcocystis sp. (Apicomplexa, Sarcocystidae) in Offspring of Tengmalm's Owls, Aegolius funereus (Aves, Strigidae). Frontiers in Veterinary Science, 2021, 8, 804096.	0.9	4
215	Are mature female voles more susceptible than immature ones to avian predation?. Acta Oecologica, 1998, 19, 389-393.	0.5	3
216	Population fluctuations and spatial synchrony in an arboreal rodent. Oecologia, 2019, 191, 861-871.	0.9	3

#	Article	IF	CITATIONS
217	Weather and biotic interactions as determinants of seasonal shifts in abundance measured through nest-box occupancy in the Siberian flying squirrel. Scientific Reports, 2020, 10, 14465.	1.6	3
218	Interaction of climate change with effects of conspecific and heterospecific density on reproduction. Oikos, 2020, 129, 1807-1819.	1.2	3
219	Maternally transferred thyroid hormones and lifeâ€history variation in birds. Journal of Animal Ecology, 2022, 91, 1489-1506.	1.3	3
220	Alien Mink Predation and Colonisation Processes of Rodent Prey on Small Islands of the Baltic Sea: Does Prey Naìveté Matter?. International Journal of Ecology, 2010, 2010, 1-7.	0.3	2
221	Do predators modify context-dependent dispersal of red squirrels?. Behavioral Ecology and Sociobiology, 2018, 72, 1.	0.6	2
222	Maternal food supplementation and perceived predation risk modify egg composition and eggshell traits but not offspring condition. Journal of Experimental Biology, 2019, 222, .	0.8	2
223	Estimating the long-term repeatability of food-hoarding behaviours in an avian predator. Biology Letters, 2021, 17, 20210286.	1.0	2