Luis Romani

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1242152/luis-romani-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

58
papers

3,171
29
h-index

61
ext. papers

3,308
ext. citations

3,308
avg, IF

56
g-index

4.91
L-index

#	Paper	IF	Citations
58	Thermal conductivity of ionic liquids under pressure. Fluid Phase Equilibria, 2020, 515, 112573	2.5	9
57	Hydrophobicity and thermodynamic response for aqueous solutions of amphiphiles. <i>Chemical Physics</i> , 2016 , 472, 36-43	2.3	18
56	Generality of hydrophobic phenomena for aqueous solutions of amphiphiles. <i>Chemical Physics Letters</i> , 2015 , 640, 184-187	2.5	17
55	Excess volumes and excess heat capacities for alkanediol+water systems in the temperature interval (283.15B13.15)K. <i>Fluid Phase Equilibria</i> , 2013 , 356, 1-10	2.5	31
54	Association effects in pure methanol via Monte Carlo simulations. I. Structure. <i>Journal of Chemical Physics</i> , 2013 , 138, 044509	3.9	18
53	Association effects in pure methanol via Monte Carlo simulations. II. Thermodynamics. <i>Journal of Chemical Physics</i> , 2013 , 138, 044510	3.9	2
52	Heat capacity singularity of binary liquid mixtures at the liquid-liquid critical point. <i>Physical Review E</i> , 2013 , 88, 042107	2.4	4
51	Association effects in the {methanol + inert solvent} system via Monte Carlo simulations. I. Structure. <i>Journal of Chemical Physics</i> , 2013 , 138, 204505	3.9	5
50	Association effects in the {methanol + inert solvent} system via Monte Carlo simulations. II. Thermodynamics. <i>Journal of Chemical Physics</i> , 2013 , 138, 204506	3.9	4
49	On the isobaric thermal expansivity of liquids. <i>Journal of Chemical Physics</i> , 2011 , 134, 094502	3.9	31
48	Thermal properties of ionic systems near the liquid-liquid critical point. <i>Journal of Chemical Physics</i> , 2011 , 135, 214507	3.9	17
47	Dependence against Temperature and Pressure of the Isobaric Thermal Expansivity of Room Temperature Ionic Liquids <i>Journal of Chemical & Dournal Of Chemic</i>	2.8	29
46	Isobaric Thermal Expansivity of Highly Polar Nitrogen Compounds at Temperatures from (278.15 to 348.15) K and at Pressures from (5 to 55) MPa. <i>Journal of Chemical & Damp; Engineering Data</i> , 2010 , 55, 1537-1541	2.8	5
45	Pressure and Temperature Dependence of Isobaric Heat Capacity for [Emim][BF4], [Bmim][BF4], [Hmim][BF4], and [Omim][BF4]] <i>Journal of Chemical & Data</i> , 2010, 55, 600-604	2.8	53
44	Isobaric Thermal Expansivity for Nonpolar Compounds. <i>Journal of Chemical & Data</i> , 2010 , 55, 2173-2179	2.8	16
43	Isobaric Thermal Expansivity for Ionic Liquids with a Common Cation as a Function of Temperature and Pressure Journal of Chemical & Engineering Data, 2010, 55, 590-594	2.8	27
42	Unusual Behavior of the Thermodynamic Response Functions of Ionic Liquids. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 211-214	6.4	41

(2007-2010)

41	Experimental methodology for precise determination of density of RTILs as a function of temperature and pressure using vibrating tube densimeters. <i>Journal of Chemical Thermodynamics</i> , 2010 , 42, 553-563	2.9	96
40	Isobaric thermal expansivity behaviour against temperature and pressure of associating fluids. <i>Journal of Chemical Thermodynamics</i> , 2010 , 42, 23-27	2.9	15
39	Thermodynamic consistency near the liquid-liquid critical point. <i>Journal of Chemical Physics</i> , 2009 , 130, 044506	3.9	14
38	Isobaric thermal expansivity of the binary system 1-hexanol+n-hexane as a function of temperature and pressure. <i>Fluid Phase Equilibria</i> , 2009 , 276, 1-6	2.5	14
37	Excess molar properties for binary systems of alkylimidazolium-based ionic liquids + nitromethane. Experimental results and ERAS-model calculations. <i>Journal of Chemical Thermodynamics</i> , 2009 , 41, 334-3	347	105
36	Excess enthalpy, density, and heat capacity for binary systems of alkylimidazolium-based ionic liquids + water. <i>Journal of Chemical Thermodynamics</i> , 2009 , 41, 161-166	2.9	162
35	An accurate calibration method for high pressure vibrating tube densimeters in the density interval (700 to 1600) kg ImB. <i>Journal of Chemical Thermodynamics</i> , 2009 , 41, 1060-1068	2.9	26
34	Thermophysical Characterization of Liquids Using Precise Density and Isobaric Heat Capacity Measurements As a Function of Pressure. <i>Journal of Chemical & Data</i> , 2009, 54, 904-915	5 ^{2.8}	49
33	Densities and Excess Enthalpies for Ionic Liquids + Ethanol or + Nitromethane. <i>Journal of Chemical & Engineering Data</i> , 2008 , 53, 1298-1301	2.8	54
32	Excess properties for binary systems ionic liquid+ethanol: Experimental results and theoretical description using the ERAS model. <i>Fluid Phase Equilibria</i> , 2008 , 274, 59-67	2.5	145
31	New calibration methodology for calorimetric determination of isobaric thermal expansivity of liquids as a function of temperature and pressure. <i>Journal of Chemical Thermodynamics</i> , 2008 , 40, 1607-	1691	23
30	Viscosities for Ionic Liquid Binary Mixtures with a Common Ion. <i>Journal of Solution Chemistry</i> , 2008 , 37, 677-688	1.8	98
29	Density and refractive index in mixtures of ionic liquids and organic solvents: Correlations and predictions. <i>Journal of Chemical Thermodynamics</i> , 2008 , 40, 949-956	2.9	120
28	Density and Heat Capacity as a Function of Temperature for Binary Mixtures of 1-Butyl-3-methylpyridinium Tetrafluoroborate + Water, + Ethanol, and + Nitromethane. <i>Journal of Chemical & Data</i> , 2007, 52, 2261-2265	2.8	60
27	Heat capacity of associated systems. Experimental data and application of a two-state model to pure liquids and mixtures. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 1119-28	3.4	48
26	Excess Magnitudes for Ionic Liquid Binary Mixtures with a Common Ion. <i>Journal of Chemical & Engineering Data</i> , 2007 , 52, 1369-1374	2.8	188
25	Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. <i>Fluid Phase Equilibria</i> , 2007 , 252, 96-102	2.5	180
24	Density and Refractive Index for Binary Systems of the Ionic Liquid [Bmim][BF4] with Methanol, 1,3-Dichloropropane, and Dimethyl Carbonate. <i>Journal of Solution Chemistry</i> , 2007 , 36, 1219-1230	1.8	83

23	Densities, speeds of sound, and refractive indices of the ternary mixtures (toluene + methyl acetate + butyl acetate) and (toluene + methyl acetate + methyl heptanoate) at 298.15 K. <i>Journal of Chemical Thermodynamics</i> , 2007 , 39, 218-224	2.9	16
22	Thermodynamic Properties of Imidazolium-Based Ionic Liquids: Densities, Heat Capacities, and Enthalpies of Fusion of [bmim][PF6] and [bmim][NTf2]. <i>Journal of Chemical & Data</i> , 2006, 51, 1856-1859	2.8	240
21	Quantitative analysis of the W-shaped excess heat capacities of binary liquid mixtures in the light of the local composition concept. <i>Fluid Phase Equilibria</i> , 2005 , 235, 201-210	2.5	12
20	Griffiths-Wheeler geometrical picture of critical phenomena: experimental testing for liquid-liquid critical points. <i>Physical Review E</i> , 2005 , 71, 021503	2.4	18
19	Heat Capacities, Densities, and Speeds of Sound for {(1,5-Dichloropentane or 1,6-Dichlorohexane) + Dodecane}. <i>Journal of Chemical & Dodecane</i> & Dodecane	2.8	21
18	pllx Data for the Dimethyl Carbonate + Decane System. <i>Journal of Chemical & Data & Manager System & Data</i> , 2004 , 49, 923-927	2.8	34
17	A detailed thermodynamic analysis of [C4mim][BF4] + water as a case study to model ionic liquid aqueous solutions. <i>Green Chemistry</i> , 2004 , 6, 369-381	10	311
16	Towards an understanding of the heat capacity of liquids. A simple two-state model for molecular association. <i>Journal of Chemical Physics</i> , 2004 , 120, 6648-59	3.9	53
15	Temperature Dependence of the Excess Molar Heat Capacities for AlcoholAlkane Mixtures. Experimental Testing of the Predictions from a Two-State Model. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 185-191	3.4	46
14	Two ways of looking at Prigogine and Defayld equation. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 2251-2259	3.6	31
13	Comparative study of the thermodynamic behaviour of the binary mixtures dimethyl carbonate + (benzene, n-heptane, cyclohexane, or toluene). <i>Canadian Journal of Chemistry</i> , 2002 , 80, 370-378	0.9	22
12	Isobaric thermal expansivity and thermophysical characterization of liquids and liquid mixtures. <i>Physical Chemistry Chemical Physics</i> , 2001 , 3, 5230-5236	3.6	145
11	Temperature Dependence of Densities and Speeds of Sound of Nitromethane + Butanol Isomers in the Range (288.15B08.15) K. <i>Journal of Chemical & Engineering Data</i> , 2001 , 46, 312-316	2.8	25
10	Thermophysical Properties of the Binary Mixtures Diethyl Carbonate + (n-Dodecane or n-Tetradecane) at Several Temperatures. <i>Journal of Chemical & Data</i> , 2001, 46, 212-21	6 ^{2.8}	45
9	Systematic Determination of Densities and Speeds of Sound of Nitroethane + Isomers of Butanol in the Range (283.15B08.15) K. <i>Journal of Chemical & Engineering Data</i> , 2000 , 45, 594-599	2.8	70
8	Group Definition in Molecular Solution Theories by Quantum Mechanical Methods: Application to 1-Alkanol +n-Alkane Mixtures. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 11275-11282	3.4	22
7	Quantum mechanical characterisation of functional groups for molecular solution theories using Bader fragments. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1997 , 93, 3437-3443		17
6	Excess heat capacities of glyme[ndash] alkane mixtures Influence of the upper critical solution temperature. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1997 , 93, 3505-3509		21

LIST OF PUBLICATIONS

5	Excess Molar Volumes and Excess Molar Heat Capacities of Mixtures Containing (Mono and Poly)ethers + Ethyl Acetate. <i>Journal of Chemical & Data, 1997</i> , 42, 1085-1089	2.8	61
4	Effect of temperature on W-shaped excess molar heat capacities and volumetric properties: Oxaalkane-nonane systems. <i>International Journal of Thermophysics</i> , 1997 , 18, 761-777	2.1	57
3	Viscometric Study of (an Aliphatic Methyl Ester + Heptane or Nonane) at the Temperature 298.15 K. <i>Journal of Chemical & Data</i> , 1996, 41, 825-830	2.8	25
2	Temperature dependence of the volumetric properties of binary mixtures containing oxaalkane + c-hexane. <i>Canadian Journal of Chemistry</i> , 1994 , 72, 454-462	0.9	23
1	Molar excess heat capacities and volumes for mixtures of alkanoates with cyclohexane at 25°C. Journal of Solution Chemistry, 1986 , 15, 879-890	1.8	47