Catherine H Kaschula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1242025/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Health benefits of resveratrol: Evidence from clinical studies. Medicinal Research Reviews, 2019, 39, 1851-1891.	10.5	307
2	Structureâ^'Activity Relationships in 4-Aminoquinoline Antiplasmodials. The Role of the Group at the 7-Position. Journal of Medicinal Chemistry, 2002, 45, 3531-3539.	6.4	215
3	The Immunomodulation and Anti-Inflammatory Effects of Garlic Organosulfur Compounds in Cancer Chemoprevention. Anti-Cancer Agents in Medicinal Chemistry, 2014, 14, 233-240.	1.7	146
4	Garlicâ€derived anticancer agents: Structure and biological activity of ajoene. BioFactors, 2010, 36, 78-85.	5.4	61
5	Forkhead Box Q1 Is a Novel Target of Breast Cancer Stem Cell Inhibition by Diallyl Trisulfide. Journal of Biological Chemistry, 2016, 291, 13495-13508.	3.4	56
6	Structure–activity studies on the anti-proliferation activity of ajoene analogues in WHCO1 oesophageal cancer cells. European Journal of Medicinal Chemistry, 2012, 50, 236-254.	5.5	53
7	Substituted ajoenes as novel anti-cancer agents. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5277-5279.	2.2	43
8	The garlic compound ajoene covalently binds vimentin, disrupts the vimentin network and exerts anti-metastatic activity in cancer cells. BMC Cancer, 2019, 19, 248.	2.6	40
9	The cytotoxicity of garlic-related disulphides and thiosulfonates in WHCO1 oesophageal cancer cells is dependent on S-thiolation and not production of ROS. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1439-1449.	2.4	39
10	The garlic compound ajoene targets protein folding in the endoplasmic reticulum of cancer cells. Molecular Carcinogenesis, 2016, 55, 1213-1228.	2.7	32
11	Anti-Proliferative Activity of Synthetic Ajoene Analogues on Cancer Cell-Lines. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 260-266.	1.7	28
12	The Cytotoxicity of the Ajoene Analogue BisPMB in WHCO1 Oesophageal Cancer Cells Is Mediated by CHOP/GADD153. Molecules, 2017, 22, 892.	3.8	22
13	In vitro Cytotoxicity of Half-Sandwich Platinum Group Metal Complexes of a Cationic Alkylated Phosphaadamantane Ligand. European Journal of Inorganic Chemistry, 2016, 2016, 1267-1273.	2.0	13
14	Tripodal Half-Sandwich Rhodium and Iridium Complexes Containing Sulfonate and Pyridinyl Entities as Antitumor Agents. European Journal of Inorganic Chemistry, 2017, 2017, 5379-5386.	2.0	10
15	The Garlic Compound <i>Z</i> â€Ajoene, <i>S</i> â€Thiolates COX2 and STAT3 and Dampens the Inflammatory Response in RAW264.7 Macrophages. Molecular Nutrition and Food Research, 2021, 65, e2000854.	3.3	8
16	Unsymmetrical Organotrisulfide Formation via Low-Temperature Disulfanyl Anion Transfer to an Organothiosulfonate. Journal of Organic Chemistry, 2019, 84, 2862-2869.	3.2	5
17	New Excursions Into the Synthesis and Medicinal Chemistry of the Disulfide Bond. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 1497-1507.	1.6	2
18	A Review of Heterolytic Synthesis Methodologies for Organotri- and Organotetrasulfane Synthesis. SynOpen, 2021, 05, 49-64.	1.7	0

#	Article	IF	CITATIONS
19	New dihydroxycucurbitacin D's from the Namib desert endemic plant Acanthosicyos horridus (!nara). Fìtoterapìâ, 2021, 155, 105041.	2.2	0