
## Ragnar Larsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1241707/publications.pdf Version: 2024-02-01



PACNAD LADSSON

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A micromechanically based model for dynamic damage evolution in unidirectional composites.<br>International Journal of Solids and Structures, 2022, 238, 111368.                                      | 1.3 | 3         |
| 2  | A preform deformation and resin flow coupled model including the cure kinetics and chemo-rheology for the VARTM process. International Journal of Material Forming, 2021, 14, 421-434.                | 0.9 | 4         |
| 3  | Validation of the ductile fracture modeling of CCI at quasi-static loading conditions. International<br>Journal of Damage Mechanics, 2021, 30, 1400-1422.                                             | 2.4 | 0         |
| 4  | Gradientâ€enhanced damage growth modeling of ductile fracture. International Journal for Numerical<br>Methods in Engineering, 2021, 122, 5676-5691.                                                   | 1.5 | 1         |
| 5  | A shell model for resin flow and preform deformation in thin-walled composite manufacturing processes. International Journal of Material Forming, 2020, 13, 923-937.                                  | 0.9 | 8         |
| 6  | A thermomechanically motivated approach for identification of flow stress properties in metal cutting. International Journal of Advanced Manufacturing Technology, 2020, 111, 1055-1068.              | 1.5 | 1         |
| 7  | A micromechanically based model for strain rate effects in unidirectional composites. Mechanics of<br>Materials, 2020, 148, 103491.                                                                   | 1.7 | 5         |
| 8  | Expanding Puck and Schürmann Inter Fiber Fracture Criterion for Fiber Reinforced Thermoplastic<br>3D-Printed Composite Materials. Materials, 2020, 13, 1653.                                          | 1.3 | 13        |
| 9  | A ductile fracture model based on continuum thermodynamics and damage. Mechanics of Materials, 2019, 139, 103197.                                                                                     | 1.7 | 3         |
| 10 | A Mechanics Based Surface Image Interpretation Method for Multifunctional Nanocomposites.<br>Nanomaterials, 2019, 9, 1578.                                                                            | 1.9 | 3         |
| 11 | Modeling and Experimental Validation of the VARTM Process for Thin-Walled Preforms. Polymers, 2019, 11, 2003.                                                                                         | 2.0 | 5         |
| 12 | Homogenized free surface flow in porous media for wetâ€out processing. International Journal for<br>Numerical Methods in Engineering, 2018, 115, 445-461.                                             | 1.5 | 3         |
| 13 | An element subscale refinement for representation of the progressive fracture based on the phantom node approach. Computers and Structures, 2018, 196, 134-145.                                       | 2.4 | 3         |
| 14 | Damage growth and strain localization in compressive loaded fiber reinforced composites. Mechanics of Materials, 2018, 127, 77-90.                                                                    | 1.7 | 17        |
| 15 | XFEMâ€based element subscale refinement for detailed representation of crack propagation in<br>largeâ€scale analyses. International Journal for Numerical Methods in Engineering, 2017, 110, 549-572. | 1.5 | 4         |
| 16 | Holistic modeling of composites manufacturing using poromechanics. Advanced Manufacturing:<br>Polymer and Composites Science, 2016, 2, 14-26.                                                         | 0.2 | 2         |
| 17 | Mesh objective continuum damage models for ductile fracture. International Journal for Numerical<br>Methods in Engineering, 2016, 106, 840-860.                                                       | 1.5 | 18        |
| 18 | MESH OBJECTIVE DAMAGE MODELING OF DUCTILE FRACTURE AT VISCO-PLASTIC CONTINUUM RESPONSE. , 2016, , .                                                                                                   |     | 0         |

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Experimental assessment of dual-scale resin flow-deformation in composites processing. Composites<br>Part A: Applied Science and Manufacturing, 2015, 76, 215-223.                      | 3.8 | 8         |
| 20 | Rate Sensitive Continuum Damage Models and Mesh Dependence in Finite Element Analyses. Scientific<br>World Journal, The, 2014, 2014, 1-8.                                               | 0.8 | 9         |
| 21 | A FE based machining simulation methodology accounting for cast iron microstructure. Finite Elements in Analysis and Design, 2014, 80, 1-10.                                            | 1.7 | 46        |
| 22 | A stress-resultant shell theory based on multiscale homogenization. Computer Methods in Applied<br>Mechanics and Engineering, 2013, 263, 1-11.                                          | 3.4 | 11        |
| 23 | Dynamic crack propagation in elastoplastic thinâ€walled structures: Modelling and validation.<br>International Journal for Numerical Methods in Engineering, 2013, 96, 63-86.           | 1.5 | 18        |
| 24 | Hypo- and hyper-inelasticity applied to modeling of compacted graphite iron machining simulations.<br>European Journal of Mechanics, A/Solids, 2013, 37, 57-68.                         | 2.1 | 14        |
| 25 | Modeling of coupled dual-scale flow–deformation processes in composites manufacturing.<br>Composites Part A: Applied Science and Manufacturing, 2013, 46, 108-116.                      | 3.8 | 18        |
| 26 | Continuum-molecular modelling of graphene. Computational Materials Science, 2012, 53, 37-43.                                                                                            | 1.4 | 12        |
| 27 | Free surface flow and preform deformation in composites manufacturing based on porous media theory. European Journal of Mechanics, A/Solids, 2012, 31, 1-12.                            | 2.1 | 15        |
| 28 | Modeling of Distortion during Casting and Machining of Aluminum Engine Blocks With Cast-in Gray<br>Iron Liners. Materials Performance and Characterization, 2012, 1, 104382.            | 0.2 | 0         |
| 29 | Atomistic continuum modeling of graphene membranes. Computational Materials Science, 2011, 50, 1744-1753.                                                                               | 1.4 | 18        |
| 30 | Dynamic fracture modeling in shell structures based on XFEM. International Journal for Numerical<br>Methods in Engineering, 2011, 86, 499-527.                                          | 1.5 | 43        |
| 31 | Anisotropic and tension–compression asymmetric model for composites consolidation. Composites<br>Part A: Applied Science and Manufacturing, 2010, 41, 284-294.                          | 3.8 | 3         |
| 32 | Two phase continuum modelling of composites consolidation. Plastics, Rubber and Composites, 2009, 38, 93-97.                                                                            | 0.9 | 3         |
| 33 | A micropolar theory for the finite elasticity of open-cell cellular solids. Proceedings of the Royal<br>Society A: Mathematical, Physical and Engineering Sciences, 2009, 465, 843-865. | 1.0 | 27        |
| 34 | Computational modelling of dissipative open-cell cellular solids at finite deformations. International<br>Journal of Plasticity, 2009, 25, 802-821.                                     | 4.1 | 10        |
| 35 | Homogenization of delamination growth in an ACA flip-chip joint based on micropolar theory.<br>European Journal of Mechanics, A/Solids, 2009, 28, 433-444.                              | 2.1 | 2         |
| 36 | Approaches to dynamic fracture modelling at finite deformations. Journal of the Mechanics and<br>Physics of Solids, 2008, 56, 613-639.                                                  | 2.3 | 29        |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A thermo-mechanical cohesive zone formulation for ductile fracture. Journal of the Mechanics and Physics of Solids, 2008, 56, 3037-3058.                                                  | 2.3 | 57        |
| 38 | Modeling of large inelastic deformations of foams with respect to the point of compaction. European<br>Journal of Mechanics, A/Solids, 2008, 27, 234-246.                                 | 2.1 | 4         |
| 39 | A constitutive equation for open-cell cellular solids, including viscoplasticity, damage and deformation induced anisotropy. International Journal of Plasticity, 2008, 24, 896-914.      | 4.1 | 18        |
| 40 | Experimental Investigation and Micropolar Modelling of the Anisotropic Conductive Adhesive<br>Flip-Chip Interconnection. Journal of Adhesion Science and Technology, 2008, 22, 1717-1731. | 1.4 | 3         |
| 41 | Experimental and Modeling of the Stress-Strain Behavior of a BGA Interconnect Due to Thermal Load.<br>Journal of Electronic Packaging, Transactions of the ASME, 2008, 130, .             | 1.2 | 1         |
| 42 | A second-order homogenization procedure for multi-scale analysis based on micropolar kinematics.<br>International Journal for Numerical Methods in Engineering, 2007, 69, 2485-2512.      | 1.5 | 81        |
| 43 | Pore–gas interaction in foams at finite deformation using staggered solution techniques. Computer<br>Methods in Applied Mechanics and Engineering, 2007, 197, 148-159.                    | 3.4 | 3         |
| 44 | Press forming of commingled yarn based composites: The preform contribution. Composites Science and Technology, 2007, 67, 515-524.                                                        | 3.8 | 4         |
| 45 | Interface modelling of microsystem interconnections using micropolar theory and discontinuous approximation. Computers and Structures, 2007, 85, 1500-1513.                               | 2.4 | 5         |
| 46 | Homogenization of microsystem interconnects based on micropolar theory and discontinuous kinematics. Journal of the Mechanics and Physics of Solids, 2007, 55, 819-841.                   | 2.3 | 27        |
| 47 | Homogenization model based on micropolar theory for the interconnection layer in microsystem packaging. , 2006, , .                                                                       |     | 0         |
| 48 | Study on the Multi-Scale Properties of the Internal Structure in ACA Interconnection. , 2006, , .                                                                                         |     | 1         |
| 49 | Theory and numerics for finite deformation fracture modelling using strong discontinuities.<br>International Journal for Numerical Methods in Engineering, 2006, 66, 911-948.             | 1.5 | 68        |
| 50 | On Fracture Modelling Based on Inverse Strong Discontinuities. , 2005, , 269-277.                                                                                                         |     | 0         |
| 51 | Hydrostatic consolidation of commingled fibre composites. Composites Science and Technology, 2005, 65, 1507-1519.                                                                         | 3.8 | 9         |
| 52 | A framework for fracture modelling based on the material forces concept with XFEM kinematics.<br>International Journal for Numerical Methods in Engineering, 2005, 62, 1763-1788.         | 1.5 | 38        |
| 53 | Interface Modelling of ACA Interconnects Using Micropolar Theory. , 2005, , .                                                                                                             |     | 2         |
| 54 | Modeling of large inelastic deformations of foam with respect to energy absorption. , 2005, , .                                                                                           |     | 2         |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Nickel based superalloy welding practices for industrial gas turbine applications. Science and<br>Technology of Welding and Joining, 2004, 9, 13-21.                                                                    | 1.5 | 338       |
| 56 | Process-modeling of composites using two-phase porous media theory. European Journal of<br>Mechanics, A/Solids, 2004, 23, 15-36.                                                                                        | 2.1 | 24        |
| 57 | A discontinuous shell-interface element for delamination analysis of laminated composite structures.<br>Computer Methods in Applied Mechanics and Engineering, 2004, 193, 3173-3194.                                    | 3.4 | 30        |
| 58 | Rotational interface formulation for delamination analysis of composite laminates. Computers and Structures, 2003, 81, 2705-2716.                                                                                       | 2.4 | 1         |
| 59 | Geometrically non-linear damage interface based on regularized strong discontinuity. International<br>Journal for Numerical Methods in Engineering, 2002, 54, 473-497.                                                  | 1.5 | 14        |
| 60 | Non-linear analysis of nearly saturated porous media: theoretical and numerical formulation.<br>Computer Methods in Applied Mechanics and Engineering, 2002, 191, 3885-3907.                                            | 3.4 | 30        |
| 61 | Theory and numerics of localization in a fluid-saturated elasto-plastic porous medium. , 2002, , 315-340.                                                                                                               |     | 0         |
| 62 | A damage model for simulation of mixed-mode delamination growth. Composite Structures, 2001, 53, 409-417.                                                                                                               | 3.1 | 30        |
| 63 | Localization analysis of a fluid-saturated elastoplastic porous medium using regularized<br>discontinuities. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 5,<br>565-582.           | 1.0 | 20        |
| 64 | Finite-element analysis of localization of deformation and fluid pressure in an elastoplastic porous medium. International Journal of Solids and Structures, 2000, 37, 7231-7257.                                       | 1.3 | 30        |
| 65 | FINITE ELEMENT MODELLING OF DELAMINATION PROGRESSION UNDER MIXED MODE LOADINGS. , 2000, , 473-480.                                                                                                                      |     | 2         |
| 66 | On localization in thermo-elastoplastic solids subjected to adiabatic conditions. European Journal of<br>Mechanics, A/Solids, 1999, 18, 557-579.                                                                        | 2.1 | 6         |
| 67 | Computational strategy for capturing localization in undrained soil. Computational Mechanics, 1999, 24, 293-303.                                                                                                        | 2.2 | 4         |
| 68 | Finite element embedded localization band for finite strain plasticity based on a regularized strong<br>discontinuity. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 4,<br>171-194. | 1.0 | 33        |
| 69 | On the Analysis of Adiabatic Strong Discontinuities within Thermoplastic Solids. , 1999, , 251-260.                                                                                                                     |     | 1         |
| 70 | On the localization properties of multiplicative hyperelasto-plastic continua with strong discontinuities. International Journal of Solids and Structures, 1997, 34, 969-990.                                           | 1.3 | 53        |
| 71 | Element-Embedded Localization Band Based on Regularized Displacement Discontinuity. Journal of<br>Engineering Mechanics - ASCE, 1996, 122, 402-411.                                                                     | 1.6 | 79        |
| 72 | LOCALIZATION PROPERTIES OF A FRICTIONAL MATERIAL MODEL BASED ON REGULARIZED STRONG<br>DISCONTINUITY. International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 20,<br>771-783.                  | 1.7 | 3         |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Implicit integration and consistent linearization for yield criteria of the Mohr-Coulomb type.<br>International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 1, 367-383. | 1.0 | 36        |
| 74 | Embedded localization band in undrained soil based on regularized strong discontinuity—theory and<br>FE-analysis. International Journal of Solids and Structures, 1996, 33, 3081-3101.          | 1.3 | 79        |
| 75 | A generalized fictitious crack model based on plastic localization and discontinuous approximation.<br>International Journal for Numerical Methods in Engineering, 1995, 38, 3167-3188.         | 1.5 | 10        |
| 76 | Cohesive crack models for semi-brittle materials derived from localization of damage coupled to plasticity. International Journal of Fracture, 1995, 69, 101-122.                               | 1.1 | 5         |
| 77 | Discontinuous displacement approximation for capturing plastic localization. International Journal for Numerical Methods in Engineering, 1993, 36, 2087-2105.                                   | 1.5 | 101       |
| 78 | Properties of Incremental Solutions for Dissipative Material. Journal of Engineering Mechanics - ASCE, 1993, 119, 647-666.                                                                      | 1.6 | 4         |
| 79 | FORMULATION AND IMPLEMENTATION OF CONDITIONS FOR FRICTIONAL CONTACT. Engineering Computations, 1993, 10, 3-14.                                                                                  | 0.7 | 12        |
| 80 | Numerical Simulation of Plastic Localization Using Fe-Mesh Realignment. , 1993, , 79-113.                                                                                                       |     | 0         |
| 81 | Finite element simulation of localized plastic deformation. Archive of Applied Mechanics, 1991, 61, 305-317.                                                                                    | 1.2 | 15        |
| 82 | Characteristics and Computational Procedure in Softening Plasticity. Journal of Engineering<br>Mechanics - ASCE, 1989, 115, 1628-1646.                                                          | 1.6 | 18        |
| 83 | Stability of elastic plane frames including soil-structure interaction. Computers and Structures, 1988, 29, 845-855.                                                                            | 2.4 | 0         |
| 84 | Microsystem Interconnections Modelling Using Micropolar Theory and Discontinuous<br>Approximation. , 0, , .                                                                                     |     | 0         |