Xiaojun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1241329/publications.pdf

Version: 2024-02-01

		201385	155451
57	3,307	27	55
papers	citations	h-index	g-index
57	57	57	3486
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Delineating soil nutrient management zones based on optimal sampling interval in medium- and small-scale intensive farming systems. Precision Agriculture, 2022, 23, 538-558.	3.1	7
2	Combining UAV multispectral imagery and ecological factors to estimate leaf nitrogen and grain protein content of wheat. European Journal of Agronomy, 2022, 132, 126405.	1.9	41
3	Optimizing spikelet fertilizer input in irrigated rice system can reduce nitrous oxide emission while increase grain yield. Agriculture, Ecosystems and Environment, 2022, 324, 107737.	2.5	11
4	In-season variable rate nitrogen recommendation for wheat precision production supported by fixed-wing UAV imagery. Precision Agriculture, 2022, 23, 830-853.	3.1	17
5	Key variable for simulating critical nitrogen dilution curve of wheat: Leaf area ratio-driven approach. Pedosphere, 2022, 32, 463-474.	2.1	4
6	Improving wheat yield prediction integrating proximal sensing and weather data with machine learning. Computers and Electronics in Agriculture, 2022, 195, 106852.	3.7	34
7	Advances in the estimations and applications of critical nitrogen dilution curve and nitrogen nutrition index of major cereal crops. A review. Computers and Electronics in Agriculture, 2022, 197, 106998.	3.7	20
8	Combining fixed-wing UAV multispectral imagery and machine learning to diagnose winter wheat nitrogen status at the farm scale. European Journal of Agronomy, 2022, 138, 126537.	1.9	15
9	Combining texture, color, and vegetation indices from fixed-wing UAS imagery to estimate wheat growth parameters using multivariate regression methods. Computers and Electronics in Agriculture, 2021, 185, 106138.	3.7	60
10	A new canopy chlorophyll index-based paddy rice critical nitrogen dilution curve in eastern China. Field Crops Research, 2021, 266, 108139.	2.3	9
11	Uncertainty analysis of critical nitrogen dilution curves for wheat. European Journal of Agronomy, 2021, 128, 126315.	1.9	13
12	Evaluation of Three Portable Optical Sensors for Non-Destructive Diagnosis of Nitrogen Status in Winter Wheat. Sensors, 2021, 21, 5579.	2.1	10
13	A Comparative Assessment of Measures of Leaf Nitrogen in Rice Using Two Leaf-Clip Meters. Sensors, 2020, 20, 175.	2.1	26
14	Use of an Active Canopy Sensor Mounted on an Unmanned Aerial Vehicle to Monitor the Growth and Nitrogen Status of Winter Wheat. Remote Sensing, 2020, 12, 3684.	1.8	23
15	Mapping Winter Wheat with Combinations of Temporally Aggregated Sentinel-2 and Landsat-8 Data in Shandong Province, China. Remote Sensing, 2020, 12, 2065.	1.8	29
16	Does the Organ-Based N Dilution Curve Improve the Predictions of N Status in Winter Wheat?. Agriculture (Switzerland), 2020, 10, 500.	1.4	11
17	A Rice Model System for Determining Suitable Sowing and Transplanting Dates. Agronomy, 2020, 10, 604.	1.3	4
18	Using an Active Sensor to Develop New Critical Nitrogen Dilution Curve for Winter Wheat. Sensors, 2020, 20, 1577.	2.1	10

#	Article	IF	CITATIONS
19	Wheat Growth Monitoring and Yield Estimation based on Multi-Rotor Unmanned Aerial Vehicle. Remote Sensing, 2020, 12, 508.	1.8	114
20	Chlorophyll meter–based nitrogen fertilizer optimization algorithm and nitrogen nutrition index for inâ€season fertilization of paddy rice. Agronomy Journal, 2020, 112, 288-300.	0.9	32
21	Combining Color Indices and Textures of UAV-Based Digital Imagery for Rice LAI Estimation. Remote Sensing, 2019, 11, 1763.	1.8	126
22	Hichin, a chitin binding protein is essential for the self-assembly of organic frameworks and calcium carbonate during shell formation. International Journal of Biological Macromolecules, 2019, 135, 745-751.	3.6	23
23	Estimation of Rice Growth Parameters Based on Linear Mixed-Effect Model Using Multispectral Images from Fixed-Wing Unmanned Aerial Vehicles. Remote Sensing, 2019, 11, 1371.	1.8	44
24	Development of Chlorophyll-Meter-Index-Based Dynamic Models for Evaluation of High-Yield Japonica Rice Production in Yangtze River Reaches. Agronomy, 2019, 9, 106.	1.3	15
25	Predicting Rice Grain Yield Based on Dynamic Changes in Vegetation Indexes during Early to Mid-Growth Stages. Remote Sensing, 2019, 11, 387.	1.8	69
26	Using a Portable Active Sensor to Monitor Growth Parameters and Predict Grain Yield of Winter Wheat. Sensors, 2019, 19, 1108.	2.1	45
27	A novel nacre matrix protein hic24 in <i>Hyriopsis cumingii</i> is essential for calcium carbonate nucleation and involved in pearl formation. Biotechnology and Applied Biochemistry, 2019, 66, 14-20.	1.4	8
28	Climate change impacts on regional rice production in China. Climatic Change, 2018, 147, 523-537.	1.7	66
29	Potential of UAV-Based Active Sensing for Monitoring Rice Leaf Nitrogen Status. Frontiers in Plant Science, 2018, 9, 1834.	1.7	45
30	Hyriopsis cumingii Hic52â€"A novel nacreous layer matrix protein with a collagen-like structure. International Journal of Biological Macromolecules, 2017, 102, 667-673.	3.6	11
31	Evaluation of the chlorophyll meter and GreenSeeker for the assessment of rice nitrogen status. Advances in Animal Biosciences, 2017, 8, 359-363.	1.0	14
32	Comparison of different critical nitrogen dilution curves for nitrogen diagnosis in rice. Scientific Reports, 2017, 7, 42679.	1.6	47
33	A Model-Based Estimate of Regional Wheat Yield Gaps and Water Use Efficiency in Main Winter Wheat Production Regions of China. Scientific Reports, 2017, 7, 6081.	1.6	27
34	Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve. Field Crops Research, 2017, 201, 32-40.	2.3	86
35	HcTyr and HcTyp-1 of Hyriopsis cumingii, novel tyrosinase and tyrosinase-related protein genes involved in nacre color formation. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2017, 204, 1-8.	0.7	45
36	Development of a Critical Nitrogen Dilution Curve of Double Cropping Rice in South China. Frontiers in Plant Science, 2017, 8, 638.	1.7	35

#	Article	IF	Citations
37	Canopy Chlorophyll Density Based Index for Estimating Nitrogen Status and Predicting Grain Yield in Rice. Frontiers in Plant Science, 2017, 8, 1829.	1.7	35
38	Using an Active-Optical Sensor to Develop an Optimal NDVI Dynamic Model for High-Yield Rice Production (Yangtze, China). Sensors, 2017, 17, 672.	2.1	30
39	A New Curve of Critical Nitrogen Concentration Based on Spike Dry Matter for Winter Wheat in Eastern China. PLoS ONE, 2016, 11, e0164545.	1.1	25
40	Optimal Leaf Positions for SPAD Meter Measurement in Rice. Frontiers in Plant Science, 2016, 7, 719.	1.7	118
41	In-season estimation of rice grain yield using critical nitrogen dilution curve. Field Crops Research, 2016, 195, 1-8.	2.3	85
42	Indicators for diagnosing nitrogen status of rice based on chlorophyll meter readings. Field Crops Research, 2016, 185, 12-20.	2.3	88
43	A Novel Matrix Protein Hic31 from the Prismatic Layer of Hyriopsis Cumingii Displays a Collagen-Like Structure. PLoS ONE, 2015, 10, e0135123.	1.1	12
44	Formation of the prismatic layer in the freshwater bivalve <i><scp>H</scp>yriopsis cumingii</i> : the feedback of crystal growth on organic matrix. Acta Zoologica, 2015, 96, 30-36.	0.6	13
45	Silkmapin of Hyriopsis cumingii, a novel silk-like shell matrix protein involved in nacre formation. Gene, 2015, 555, 217-222.	1.0	35
46	Determination of Critical Nitrogen Dilution Curve Based on Stem Dry Matter in Rice. PLoS ONE, 2014, 9, e104540.	1.1	28
47	Development of critical nitrogen dilution curve in rice based on leaf dry matter. European Journal of Agronomy, 2014, 55, 20-28.	1.9	50
48	Leaf Area Index Estimation Using Time-Series MODIS Data in Different Types of Vegetation. Journal of the Indian Society of Remote Sensing, 2014, 42, 733-743.	1.2	5
49	New Critical Nitrogen Curve Based on Leaf Area Index for Winter Wheat. Agronomy Journal, 2014, 106, 379-389.	0.9	41
50	Exploring Novel Bands and Key Index for Evaluating Leaf Equivalent Water Thickness in Wheat Using Hyperspectra Influenced by Nitrogen. PLoS ONE, 2014, 9, e96352.	1.1	22
51	Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 2013, 34, 2607-2654.	1.3	1,263
52	Development of critical nitrogen dilution curve of Japonica rice in Yangtze River Reaches. Field Crops Research, 2013, 149, 149-158.	2.3	111
53	A dynamic statistical model for geospatial data access laws based on cloud computing. , $2013, \ldots$		1
54	A Knowledge-Based Model for Nitrogen Management in Rice and Wheat. Plant Production Science, 2009, 12, 100-108.	0.9	12

XIAOJUN LIU

#	Article	IF	CITATIONS
55	Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice. International Journal of Applied Earth Observation and Geoinformation, 2008, 10, 1-10.	1.4	131
56	Development of a growth model-based decision support system for crop management. Frontiers of Agriculture in China, 2007, 1, 296-300.	0.2	1
57	Improving Estimation of Winter Wheat Nitrogen Status Using Random Forest by Integrating Multi-Source Data Across Different Agro-Ecological Zones. Frontiers in Plant Science, 0, 13, .	1.7	5