Tawanda Gumbo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1241212/publications.pdf

Version: 2024-02-01

168 papers 8,678 citations

41258 49 h-index 85 g-index

170 all docs

170 docs citations

170 times ranked

5699 citing authors

#	Article	IF	CITATIONS
1	Antimicrobial Resistance: Pharmacokineticsâ€Pharmacodynamics of Antimicrobial Therapy: It's Not Just for Mice Anymore. Clinical Infectious Diseases, 2007, 44, 79-86.	2.9	623
2	The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respiratory Medicine, the, 2017, 5, 291-360.	5.2	459
3	Serum Drug Concentrations Predictive of Pulmonary Tuberculosis Outcomes. Journal of Infectious Diseases, 2013, 208, 1464-1473.	1.9	378
4	Concentration-Dependent <i>Mycobacterium tuberculosis</i> Killing and Prevention of Resistance by Rifampin. Antimicrobial Agents and Chemotherapy, 2007, 51, 3781-3788.	1.4	314
5	Selection of a Moxifloxacin Dose That Suppresses Drug Resistance inMycobacterium tuberculosis,by Use of an In Vitro Pharmacodynamic Infection Model and Mathematical Modeling. Journal of Infectious Diseases, 2004, 190, 1642-1651.	1.9	309
6	Multidrug-Resistant Tuberculosis Not Due to Noncompliance but to Between-Patient Pharmacokinetic Variability. Journal of Infectious Diseases, 2011, 204, 1951-1959.	1.9	246
7	Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis. Lancet Respiratory Medicine,the, 2014, 2, 321-338.	5.2	237
8	Meta-Analysis of Clinical Studies Supports the Pharmacokinetic Variability Hypothesis for Acquired Drug Resistance and Failure of Antituberculosis Therapy. Clinical Infectious Diseases, 2012, 55, 169-177.	2.9	199
9	Pharmacokinetics-Pharmacodynamics of Pyrazinamide in a Novel In Vitro Model of Tuberculosis for Sterilizing Effect: a Paradigm for Faster Assessment of New Antituberculosis Drugs. Antimicrobial Agents and Chemotherapy, 2009, 53, 3197-3204.	1.4	178
10	The Antibiotic Resistance Arrow of Time: Efflux Pump Induction Is a General First Step in the Evolution of Mycobacterial Drug Resistance. Antimicrobial Agents and Chemotherapy, 2012, 56, 4806-4815.	1.4	158
11	Pharmacodynamics of Caspofungin in a Murine Model of Systemic Candidiasis: Importance of Persistence of Caspofungin in Tissues to Understanding Drug Activity. Antimicrobial Agents and Chemotherapy, 2005, 49, 5058-5068.	1.4	154
12	Isoniazid Bactericidal Activity and Resistance Emergence: Integrating Pharmacodynamics and Pharmacogenomics To Predict Efficacy in Different Ethnic Populations. Antimicrobial Agents and Chemotherapy, 2007, 51, 2329-2336.	1.4	149
13	Drug-Penetration Gradients Associated with Acquired Drug Resistance in Patients with Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1208-1219.	2.5	130
14	New Susceptibility Breakpoints for First-Line Antituberculosis Drugs Based on Antimicrobial Pharmacokinetic/Pharmacodynamic Science and Population Pharmacokinetic Variability. Antimicrobial Agents and Chemotherapy, 2010, 54, 1484-1491.	1.4	126
15	Impact of Nonlinear Interactions of Pharmacokinetics and MICs on Sputum Bacillary Kill Rates as a Marker of Sterilizing Effect in Tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 38-45.	1.4	123
16	Effluxâ€Pump–Derived Multiple Drug Resistance to Ethambutol Monotherapy in <i>Mycobacterium tuberculosis</i> and the Pharmacokinetics and Pharmacodynamics of Ethambutol. Journal of Infectious Diseases, 2010, 201, 1225-1231.	1.9	119
17	A Meta-Analysis of Self-Administered vs Directly Observed Therapy Effect on Microbiologic Failure, Relapse, and Acquired Drug Resistance in Tuberculosis Patients. Clinical Infectious Diseases, 2013, 57, 21-31.	2.9	111
18	Outcomes, infectiousness, and transmission dynamics of patients with extensively drug-resistant tuberculosis and home-discharged patients with programmatically incurable tuberculosis: a prospective cohort study. Lancet Respiratory Medicine, the, 2017, 5, 269-281.	5.2	106

#	Article	IF	Citations
19	An Oracle: Antituberculosis Pharmacokinetics-Pharmacodynamics, Clinical Correlation, and Clinical Trial Simulations To Predict the Future. Antimicrobial Agents and Chemotherapy, 2011, 55, 24-34.	1.4	105
20	Once-Weekly Micafungin Therapy Is as Effective as Daily Therapy for Disseminated Candidiasis in Mice with Persistent Neutropenia. Antimicrobial Agents and Chemotherapy, 2007, 51, 968-974.	1.4	102
21	Drug Concentration Thresholds Predictive of Therapy Failure and Death in Children With Tuberculosis: Bread Crumb Trails in Random Forests. Clinical Infectious Diseases, 2016, 63, S63-S74.	2.9	102
22	Population Pharmacokinetics of Micafungin in Pediatric Patients and Implications for Antifungal Dosing. Antimicrobial Agents and Chemotherapy, 2007, 51, 3714-3719.	1.4	99
23	Systematic Review and Meta-analyses of the Effect of Chemotherapy on Pulmonary Mycobacterium abscessus Outcomes and Disease Recurrence. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	99
24	Isoniazid's Bactericidal Activity Ceases because of the Emergence of Resistance, Not Depletion ofMycobacterium tuberculosisin the Log Phase of Growth. Journal of Infectious Diseases, 2007, 195, 194-201.	1.9	93
25	Pharmacokinetic-Pharmacodynamic and Dose-Response Relationships of Antituberculosis Drugs: Recommendations and Standards for Industry and Academia. Journal of Infectious Diseases, 2015, 211, S96-S106.	1.9	93
26	The Lancet Respiratory Medicine Commission: 2019 update: epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant and incurable tuberculosis. Lancet Respiratory Medicine, the, 2019, 7, 820-826.	5.2	92
27	Dynamic imaging in patients with tuberculosis reveals heterogeneous drug exposures in pulmonary lesions. Nature Medicine, 2020, 26, 529-534.	15.2	87
28	Candida glabrata Fungemia Clinical Features of 139 Patients. Medicine (United States), 1999, 78, 220-227.	0.4	81
29	Linezolid Dose That Maximizes Sterilizing Effect While Minimizing Toxicity and Resistance Emergence for Tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	81
30	Forecasting Accuracy of the Hollow Fiber Model of Tuberculosis for Clinical Therapeutic Outcomes. Clinical Infectious Diseases, 2015, 61, S25-S31.	2.9	79
31	Nonclinical Models for Antituberculosis Drug Development: A Landscape Analysis. Journal of Infectious Diseases, 2015, 211, S83-S95.	1.9	79
32	A new evolutionary and pharmacokineticâ€"pharmacodynamic scenario for rapid emergence of resistance to single and multiple anti-tuberculosis drugs. Current Opinion in Pharmacology, 2011, 11, 457-463.	1.7	76
33	Levofloxacin Pharmacokinetics/Pharmacodynamics, Dosing, Susceptibility Breakpoints, and Artificial Intelligence in the Treatment of Multidrug-resistant Tuberculosis. Clinical Infectious Diseases, 2018, 67, S293-S302.	2.9	74
34	Pharmacodynamic Evidence that Ciprofloxacin Failure against Tuberculosis Is Not Due to Poor Microbial Kill but to Rapid Emergence of Resistance. Antimicrobial Agents and Chemotherapy, 2005, 49, 3178-3181.	1.4	73
35	Anidulafungin Pharmacokinetics and Microbial Response in Neutropenic Mice with Disseminated Candidiasis. Antimicrobial Agents and Chemotherapy, 2006, 50, 3695-3700.	1.4	69
36	Population pharmacokinetics of micafungin in adult patients. Diagnostic Microbiology and Infectious Disease, 2008, 60, 329-331.	0.8	69

#	Article	IF	Citations
37	Treatment of Active Pulmonary Tuberculosis in Adults: Current Standards and Recent Advances. Pharmacotherapy, 2009, 29, 1468-1481.	1.2	65
38	Amikacin Concentrations Predictive of Ototoxicity in Multidrug-Resistant Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2015, 59, 6337-6343.	1.4	63
39	Clinical and Toxicodynamic Evidence that High-Dose Pyrazinamide Is Not More Hepatotoxic than the Low Doses Currently Used. Antimicrobial Agents and Chemotherapy, 2010, 54, 2847-2854.	1.4	61
40	Correlations Between the Hollow Fiber Model of Tuberculosis and Therapeutic Events in Tuberculosis Patients: Learn and Confirm. Clinical Infectious Diseases, 2015, 61, S18-S24.	2.9	61
41	Systematic Analysis of Hollow Fiber Model of Tuberculosis Experiments. Clinical Infectious Diseases, 2015, 61, S10-S17.	2.9	60
42	Integrating Pharmacokinetics and Pharmacodynamics in Operational Research to End Tuberculosis. Clinical Infectious Diseases, 2020, 70, 1774-1780.	2.9	59
43	Ethambutol Optimal Clinical Dose and Susceptibility Breakpoint Identification by Use of a Novel Pharmacokinetic-Pharmacodynamic Model of Disseminated Intracellular <i>Mycobacterium avium</i> Antimicrobial Agents and Chemotherapy, 2010, 54, 1728-1733.	1.4	57
44	Subtherapeutic concentrations of first-line anti-TB drugs in South African children treated according to current guidelines: the PHATISA study. Journal of Antimicrobial Chemotherapy, 2015, 70, 1115-1123.	1.3	57
45	The pyrazinamide susceptibility breakpoint above which combination therapy fails. Journal of Antimicrobial Chemotherapy, 2014, 69, 2420-2425.	1.3	56
46	Ceftazidime-avibactam has potent sterilizing activity against highly drug-resistant tuberculosis. Science Advances, 2017, 3, e1701102.	4.7	56
47	Tigecycline Is Highly Efficacious against Mycobacterium abscessus Pulmonary Disease. Antimicrobial Agents and Chemotherapy, 2016, 60, 2895-2900.	1.4	54
48	Linezolid-based Regimens for Multidrug-resistant Tuberculosis (TB): A Systematic Review to Establish or Revise the Current Recommended Dose for TB Treatment. Clinical Infectious Diseases, 2018, 67, S327-S335.	2.9	53
49	The Crisis of Resistance: Identifying Drug Exposures to Suppress Amplification of Resistant Mutant Subpopulations. Clinical Infectious Diseases, 2006, 42, 525-532.	2.9	51
50	Redefining Multidrug-Resistant Tuberculosis Based on Clinical Response to Combination Therapy. Antimicrobial Agents and Chemotherapy, 2014, 58, 6111-6115.	1.4	51
51	Meta-analyses and the evidence base for microbial outcomes in the treatment of pulmonary Mycobacterium avium–intracellulare complex disease. Journal of Antimicrobial Chemotherapy, 2017, 72, i3-i19.	1.3	51
52	Fractal Geometry and the Pharmacometrics of Micafungin in Overweight, Obese, and Extremely Obese People. Antimicrobial Agents and Chemotherapy, 2011, 55, 5107-5112.	1.4	47
53	Weight Drives Caspofungin Pharmacokinetic Variability in Overweight and Obese People: Fractal Power Signatures beyond Two-Thirds or Three-Fourths. Antimicrobial Agents and Chemotherapy, 2013, 57, 2259-2264.	1.4	47
54	Moxifloxacin Pharmacokinetics/Pharmacodynamics and Optimal Dose and Susceptibility Breakpoint Identification for Treatment of Disseminated <i>Mycobacterium avium</i> Infection. Antimicrobial Agents and Chemotherapy, 2010, 54, 2534-2539.	1.4	46

#	Article	IF	CITATIONS
55	<scp>d</scp> -Cycloserine Pharmacokinetics/Pharmacodynamics, Susceptibility, and Dosing Implications in Multidrug-resistant Tuberculosis: A Faustian Deal. Clinical Infectious Diseases, 2018, 67, S308-S316.	2.9	45
56	Pharmacokinetic Mismatch Does Not Lead to Emergence of Isoniazid- or Rifampin-Resistant Mycobacterium tuberculosis but to Better Antimicrobial Effect: a New Paradigm for Antituberculosis Drug Scheduling. Antimicrobial Agents and Chemotherapy, 2011, 55, 5085-5089.	1.4	44
57	Thioridazine Pharmacokinetic-Pharmacodynamic Parameters "Wobble―during Treatment of Tuberculosis: a Theoretical Basis for Shorter-Duration Curative Monotherapy with Congeners. Antimicrobial Agents and Chemotherapy, 2013, 57, 5870-5877.	1.4	42
58	Failure of the Amikacin, Cefoxitin, and Clarithromycin Combination Regimen for Treating Pulmonary Mycobacterium abscessus Infection. Antimicrobial Agents and Chemotherapy, 2016, 60, 6374-6376.	1.4	41
59	Amikacin Pharmacokinetics/Pharmacodynamics in a Novel Hollow-Fiber Mycobacterium abscessus Disease Model. Antimicrobial Agents and Chemotherapy, 2016, 60, 1242-1248.	1.4	41
60	A Faropenem, Linezolid, and Moxifloxacin Regimen for Both Drug-Susceptible and Multidrug-Resistant Tuberculosis in Children: FLAME Path on the Milky Way. Clinical Infectious Diseases, 2016, 63, S95-S101.	2.9	40
61	A Long-term Co-perfused Disseminated Tuberculosis-3D Liver Hollow Fiber Model for Both Drug Efficacy and Hepatotoxicity in Babies. EBioMedicine, 2016, 6, 126-138.	2.7	40
62	Concentration-Dependent Antagonism and Culture Conversion in Pulmonary Tuberculosis. Clinical Infectious Diseases, 2017, 64, 1350-1359.	2.9	40
63	Linezolid for Infants and Toddlers With Disseminated Tuberculosis: First Steps. Clinical Infectious Diseases, 2016, 63, S80-S87.	2.9	39
64	Bacterial and host determinants of cough aerosol culture positivity in patients with drug-resistant versus drug-susceptible tuberculosis. Nature Medicine, 2020, 26, 1435-1443.	15.2	38
65	Meningeal Tuberculosis. Medicine (United States), 2010, 89, 189-195.	0.4	37
66	Artificial Intelligence and Amikacin Exposures Predictive of Outcomes in Multidrug-Resistant Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2016, 60, 5928-5932.	1.4	37
67	Concentration-Dependent Synergy and Antagonism of Linezolid and Moxifloxacin in the Treatment of Childhood Tuberculosis: The Dynamic Duo. Clinical Infectious Diseases, 2016, 63, S88-S94.	2.9	37
68	In Vitro and In Vivo Modeling of Tuberculosis Drugs and its Impact on Optimization of Doses and Regimens. Current Pharmaceutical Design, 2011, 17, 2881-2888.	0.9	36
69	Repurposing drugs for treatment of Mycobacterium abscessus: a view to a kill. Journal of Antimicrobial Chemotherapy, 2020, 75, 1212-1217.	1.3	36
70	Impact of pharmacodynamics and pharmacokinetics on echinocandin dosing strategies. Current Opinion in Infectious Diseases, 2007, 20, 587-591.	1.3	34
71	Optimal Clinical Doses of Faropenem, Linezolid, and Moxifloxacin in Children With Disseminated Tuberculosis: Goldilocks. Clinical Infectious Diseases, 2016, 63, S102-S109.	2.9	34
72	Tedizolid is highly bactericidal in the treatment of pulmonary Mycobacterium avium complex disease. Journal of Antimicrobial Chemotherapy, 2017, 72, i30-i35.	1.3	34

#	Article	IF	Citations
73	Tuberculous Pericarditis is Multibacillary and Bacterial Burden Drives High Mortality. EBioMedicine, 2015, 2, 1634-1639.	2.7	33
74	Ethambutol Pharmacokinetic Variability Is Linked to Body Mass in Overweight, Obese, and Extremely Obese People. Antimicrobial Agents and Chemotherapy, 2012, 56, 1502-1507.	1.4	31
75	Amikacin Optimal Exposure Targets in the Hollow-Fiber System Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 5922-5927.	1.4	31
76	Biological variability and the emergence of multidrug-resistant tuberculosis. Nature Genetics, 2013, 45, 720-721.	9.4	30
77	The discovery of ceftazidime/avibactam as an anti-Mycobacterium avium agent. Journal of Antimicrobial Chemotherapy, 2017, 72, i36-i42.	1.3	29
78	Ethionamide Pharmacokinetics/Pharmacodynamics-derived Dose, the Role of MICs in Clinical Outcome, and the Resistance Arrow of Time in Multidrug-resistant Tuberculosis. Clinical Infectious Diseases, 2018, 67, S317-S326.	2.9	29
79	Antibacterial and Sterilizing Effect of Benzylpenicillin in Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	29
80	A Human Lung Challenge Model to Evaluate the Safety and Immunogenicity of PPD and Live Bacillus Calmette-GuA©rin. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1277-1291.	2.5	28
81	<i>In Silico</i> Children and the Glass Mouse Model: Clinical Trial Simulations To Identify and Individualize Optimal Isoniazid Doses in Children with Tuberculosis. Antimicrobial Agents and Chemotherapy, $2011, 55, 539-545$.	1.4	27
82	Thioridazine as Chemotherapy for Mycobacterium avium Complex Diseases. Antimicrobial Agents and Chemotherapy, 2016, 60, 4652-4658.	1.4	27
83	Spatial Network Mapping of Pulmonary Multidrug-Resistant Tuberculosis Cavities Using RNA Sequencing. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 370-380.	2.5	27
84	Poor Penetration of Antibiotics Into Pericardium in Pericardial Tuberculosis. EBioMedicine, 2015, 2, 1640-1649.	2.7	26
85	Azithromycin Dose To Maximize Efficacy and Suppress Acquired Drug Resistance in Pulmonary Mycobacterium avium Disease. Antimicrobial Agents and Chemotherapy, 2016, 60, 2157-2163.	1.4	26
86	Transformation Morphisms and Time-to-Extinction Analysis That Map Therapy Duration From Preclinical Models to Patients With Tuberculosis: Translating From Apples to Oranges. Clinical Infectious Diseases, 2018, 67, S349-S358.	2.9	26
87	Pharmacokinetic/Pharmacodynamic Background and Methods and Scientific Evidence Base for Dosing of Second-line Tuberculosis Drugs. Clinical Infectious Diseases, 2018, 67, S267-S273.	2.9	26
88	The Sterilizing Effect of Intermittent Tedizolid for Pulmonary Tuberculosis. Clinical Infectious Diseases, 2018, 67, S336-S341.	2.9	26
89	Moxifloxacin's Limited Efficacy in the Hollow-Fiber Model of Mycobacterium abscessus Disease. Antimicrobial Agents and Chemotherapy, 2016, 60, 3779-3785.	1.4	25
90	Linezolid as treatment for pulmonary Mycobacterium avium disease. Journal of Antimicrobial Chemotherapy, 2017, 72, i24-i29.	1.3	25

#	Article	IF	Citations
91	A novel ceftazidime/avibactam, rifabutin, tedizolid and moxifloxacin (CARTM) regimen for pulmonary Mycobacterium avium disease. Journal of Antimicrobial Chemotherapy, 2017, 72, i48-i53.	1.3	25
92	Therapy duration and long-term outcomes in extra-pulmonary tuberculosis. BMC Infectious Diseases, 2014, 14, 115.	1.3	24
93	Susceptibility Testing of Antibiotics That Degrade Faster than the Doubling Time of Slow-Growing Mycobacteria: Ertapenem Sterilizing Effect versus Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 3193-3195.	1.4	23
94	Sterilizing Effect of Ertapenem-Clavulanate in a Hollow-Fiber Model of Tuberculosis and Implications on Clinical Dosing. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	23
95	Gatifloxacin Pharmacokinetics/Pharmacodynamics–based Optimal Dosing for Pulmonary and Meningeal Multidrug-resistant Tuberculosis. Clinical Infectious Diseases, 2018, 67, S274-S283.	2.9	23
96	Rapid Drug Tolerance and Dramatic Sterilizing Effect of Moxifloxacin Monotherapy in a Novel Hollow-Fiber Model of Intracellular Mycobacterium kansasii Disease. Antimicrobial Agents and Chemotherapy, 2015, 59, 2273-2279.	1.4	21
97	Neuropsychiatric toxicity and cycloserine concentrations during treatment for multidrug-resistant tuberculosis. International Journal of Infectious Diseases, 2021, 105, 688-694.	1.5	20
98	New Susceptibility Breakpoints and the Regional Variability of MIC Distribution in Mycobacterium tuberculosis Isolates. Antimicrobial Agents and Chemotherapy, 2012, 56, 5428-5428.	1.4	19
99	Isoniazid clearance is impaired among human immunodeficiency virus/tuberculosis patients with high levels of immune activation. British Journal of Clinical Pharmacology, 2017, 83, 801-811.	1.1	19
100	Intermediate Susceptibility Dose-Dependent Breakpoints For High-Dose Rifampin, Isoniazid, and Pyrazinamide Treatment in Multidrug-Resistant Tuberculosis Programs. Clinical Infectious Diseases, 2018, 67, 1743-1749.	2.9	19
101	Multiparameter Responses to Tedizolid Monotherapy and Moxifloxacin Combination Therapy Models of Children With Intracellular Tuberculosis. Clinical Infectious Diseases, 2018, 67, S342-S348.	2.9	18
102	Minocycline Immunomodulates via Sonic Hedgehog Signaling and Apoptosis and Has Direct Potency Against Drug-Resistant Tuberculosis. Journal of Infectious Diseases, 2019, 219, 975-985.	1.9	18
103	Acquired Drug Resistance: We Can Do More Than We Think!. Clinical Infectious Diseases, 2015, 60, 969-970.	2.9	17
104	The Non-Linear Child: Ontogeny, Isoniazid Concentration, and NAT2 Genotype Modulate Enzyme Reaction Kinetics and Metabolism. EBioMedicine, 2016, 11, 118-126.	2.7	17
105	Pan-tuberculosis regimens: an argument against. Lancet Respiratory Medicine, the, 2018, 6, 240-242.	5.2	17
106	Efficacy Versus Hepatotoxicity of High-dose Rifampin, Pyrazinamide, and Moxifloxacin to Shorten Tuberculosis Therapy Duration: There Is Still Fight in the Old Warriors Yet!. Clinical Infectious Diseases, 2018, 67, S359-S364.	2.9	17
107	Modeling and simulation for medical product development and evaluation: highlights from the FDA-C-Path-ISOP 2013 workshop. Journal of Pharmacokinetics and Pharmacodynamics, 2014, 41, 545-552.	0.8	16
108	Single or 2-Dose Micafungin Regimen for Treatment of Invasive Candidiasis: Therapia Sterilisans Magna!. Clinical Infectious Diseases, 2015, 61, S635-S642.	2.9	16

#	Article	IF	Citations
109	Artificial intelligence–derived 3-Way Concentration-dependent Antagonism of Gatifloxacin, Pyrazinamide, and Rifampicin During Treatment of Pulmonary Tuberculosis. Clinical Infectious Diseases, 2018, 67, S284-S292.	2.9	16
110	Anidulafungin in the treatment of invasive fungal infections. Therapeutics and Clinical Risk Management, 2008, Volume 4, 71-78.	0.9	15
111	Urine colorimetry for therapeutic drug monitoring of pyrazinamide during tuberculosis treatment. International Journal of Infectious Diseases, 2018, 68, 18-23.	1.5	15
112	Clofazimine for the Treatment of Mycobacterium kansasii. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	15
113	Minocycline treatment for pulmonary Mycobacterium avium complex disease based on pharmacokinetics/pharmacodynamics and Bayesian framework mathematical models. Journal of Antimicrobial Chemotherapy, 2019, 74, 1952-1961.	1.3	15
114	Pegylated Interferon Fractal Pharmacokinetics: Individualized Dosing for Hepatitis C Virus Infection. Antimicrobial Agents and Chemotherapy, 2013, 57, 1115-1120.	1.4	14
115	A â€~shock and awe' thioridazine and moxifloxacin combination-based regimen for pulmonary Mycobacterium avium–intracellulare complex disease. Journal of Antimicrobial Chemotherapy, 2017, 72, i43-i47.	1.3	14
116	Duration of pretomanid/moxifloxacin/pyrazinamide therapy compared with standard therapy based on time-to-extinction mathematics. Journal of Antimicrobial Chemotherapy, 2020, 75, 392-399.	1.3	14
117	Clinicopathological features of cutaneous histoplasmosis in human immunodeficiency virus-infected patients in Zimbabwe. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2001, 95, 635-636.	0.7	13
118	Urine colorimetry to detect Low rifampin exposure during tuberculosis therapy: a proof-of-concept study. BMC Infectious Diseases, 2016, 16, 242.	1.3	13
119	A Combination Regimen Design Program Based on Pharmacodynamic Target Setting for Childhood Tuberculosis: Design Rules for the Playground. Clinical Infectious Diseases, 2016, 63, S75-S79.	2.9	13
120	Once-a-week tigecycline for the treatment of drug-resistant TB. Journal of Antimicrobial Chemotherapy, 2019, 74, 1607-1617.	1.3	13
121	Cumulative Fraction of Response for Once- and Twice-Daily Delamanid in Patients with Pulmonary Multidrug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2020, 65, .	1.4	13
122	Population Pharmacokinetics of Cycloserine and Pharmacokinetic/Pharmacodynamic Target Attainment in Multidrug-Resistant Tuberculosis Patients Dosed with Terizidone. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	13
123	Mycobacterial Shuttle Vectors Designed for High-Level Protein Expression in Infected Macrophages. Applied and Environmental Microbiology, 2012, 78, 6829-6837.	1.4	12
124	Cefdinir and \hat{I}^2 -Lactamase Inhibitor Independent Efficacy Against Mycobacterium tuberculosis. Frontiers in Pharmacology, 2021, 12, 677005.	1.6	12
125	Pyrazinamide clearance is impaired among HIV/tuberculosis patients with high levels of systemic immune activation. PLoS ONE, 2017, 12, e0187624.	1.1	12
126	Late Complications of Candida (Torulopsis) glabrata Fungemia: Description of a Phenomenon. Scandinavian Journal of Infectious Diseases, 2002, 34, 817-818.	1.5	11

#	Article	IF	CITATIONS
127	A programme to create short-course chemotherapy for pulmonary Mycobacterium avium disease based on pharmacokinetics/pharmacodynamics and mathematical forecasting. Journal of Antimicrobial Chemotherapy, 2017, 72, i54-i60.	1.3	11
128	Failure of the azithromycin and ethambutol combination regimen in the hollow-fibre system model of pulmonary Mycobacterium avium infection is due to acquired resistance. Journal of Antimicrobial Chemotherapy, 2017, 72, i20-i23.	1.3	11
129	Bacterial load slopes represent biomarkers of tuberculosis therapy success, failure, and relapse. Communications Biology, 2021, 4, 664.	2.0	11
130	Omadacycline efficacy in the hollow fibre system model of pulmonary <i>Mycobacterium avium</i> complex and potency at clinically attainable doses. Journal of Antimicrobial Chemotherapy, 2022, 77, 1694-1705.	1.3	11
131	Pharmacokinetic/pharmacodynamic-based treatment of disseminatedMycobacterium avium. Future Microbiology, 2011, 6, 433-439.	1.0	10
132	Evaluation of Ceftriaxone Plus Avibactam in an Intracellular Hollow Fiber Model of Tuberculosis: Implications for the Treatment of Disseminated and Meningeal Tuberculosis in Children. Pediatric Infectious Disease Journal, 2020, 39, 1092-1100.	1.1	10
133	Multidrug-resistant tuberculosis: pharmacokinetic and pharmacodynamic science. Lancet Infectious Diseases, The, 2017, 17, 898.	4.6	9
134	Comparison of Rifamycins for Efficacy Against Mycobacterium avium Complex and Resistance Emergence in the Hollow Fiber Model System. Frontiers in Pharmacology, 2021, 12, 645264.	1.6	9
135	Comparison of a Novel Regimen of Rifapentine, Tedizolid, and Minocycline with Standard Regimens for Treatment of Pulmonary Mycobacterium kansasii. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	8
136	Tedizolid, Faropenem, and Moxifloxacin Combination With Potential Activity Against Nonreplicating Mycobacterium tuberculosis. Frontiers in Pharmacology, 2020, 11, 616294.	1.6	8
137	Reply to Wallis et al. and Mitchison et al Journal of Infectious Diseases, 2007, 195, 1872-1873.	1.9	7
138	Acquired Drug Resistance Because of Pharmacokinetic Variability in a Young Child With Tuberculosis. Pediatric Infectious Disease Journal, 2014, 33, 1205.	1.1	7
139	Partnerships to Design Novel Regimens to Treat Childhood Tuberculosis,Sui Generis: The Road Ahead. Clinical Infectious Diseases, 2016, 63, S110-S115.	2.9	7
140	Pharmacokinetics and other risk factors for kanamycin-induced hearing loss in patients with multi-drug resistant tuberculosis. International Journal of Audiology, 2020, 59, 219-223.	0.9	7
141	Mycobacterium tuberculosis sterilizing activity of faropenem, pyrazinamide and linezolid combination and failure to shorten the therapy duration. International Journal of Infectious Diseases, 2021, 104, 680-684.	1.5	7
142	Potency of vancomycin against Mycobacterium tuberculosis in the hollow fiber system model. Journal of Global Antimicrobial Resistance, 2021, 24, 403-410.	0.9	7
143	Markers of gut dysfunction do not explain low rifampicin bioavailability in HIV-associated TB. Journal of Antimicrobial Chemotherapy, 2017, 72, 2020-2027.	1.3	6
144	Optimizing ethambutol dosing among HIV/tuberculosis co-infected patients: a population pharmacokinetic modelling and simulation study. Journal of Antimicrobial Chemotherapy, 2019, 74, 2994-3002.	1.3	6

#	Article	IF	CITATIONS
145	Novel Short-Course Therapy and Morphism Mapping for Clinical Pulmonary Mycobacterium kansasii. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	6
146	Integrating pharmacokinetics, pharmacodynamics and pharmacogenomics to predict outcomes in antibacterial therapy. Current Opinion in Drug Discovery & Development, 2008, 11, 32-42.	1.9	6
147	Comment on: Clinical significance of 2 h plasma concentrations of first-line anti-tuberculosis drugs: a prospective observational study. Journal of Antimicrobial Chemotherapy, 2015, 70, 320-321.	1.3	5
148	pH Conditions under Which Pyrazinamide Works in Humans. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	5
149	Repurposing Cefazolin-Avibactam for the Treatment of Drug Resistant Mycobacterium tuberculosis. Frontiers in Pharmacology, 2021, 12, 776969.	1.6	5
150	Scientific and patient care evidence to change susceptibility breakpoints for first-line anti-tuberculosis drugs [Correspondence]. International Journal of Tuberculosis and Lung Disease, 2012, 16, 706-707.	0.6	4
151	Reply to Raoult. Clinical Infectious Diseases, 2017, 64, 984-984.	2.9	4
152	Individualizing Tuberculosis (TB) Treatment: Are TB Programs in High Burden Settings Ready for Prime Time Therapeutic Drug Monitoring?. Clinical Infectious Diseases, 2018, 67, 717-718.	2.9	4
153	The Relationship Between Drug Concentration in Tuberculosis Lesions, Epithelial Lining Fluid, and Clinical Outcomes. Clinical Infectious Diseases, 2021, 73, e3374-e3376.	2.9	4
154	Effect of Isoniazid Intake on Ethionamide Pharmacokinetics and Target Attainment in Multidrug-Resistant Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2021, 65, e0027821.	1.4	4
155	Quantitative assessment of the activity of antituberculosis drugs and regimens. Expert Review of Anti-Infective Therapy, 2019, 17, 449-457.	2.0	3
156	sncRNA-1 Is a Small Noncoding RNA Produced by Mycobacterium tuberculosis in Infected Cells That Positively Regulates Genes Coupled to Oleic Acid Biosynthesis. Frontiers in Microbiology, 2020, 11, 1631.	1.5	3
157	Rifampin Pharmacokinetics/Pharmacodynamics in the Hollow-Fiber Model of Mycobacterium kansasii Infection. Antimicrobial Agents and Chemotherapy, 2022, 66, e0232021.	1.4	3
158	Pharmacokinetics of standard versus high-dose isoniazid for treatment of multidrug-resistant tuberculosis. Journal of Antimicrobial Chemotherapy, O, , .	1.3	3
159	Fatal Lure of Look-Back Studies in Explaining Pharmacological Events Such as Acquired Drug Resistance in Patients With Multidrug-Resistant Tuberculosis. Journal of Infectious Diseases, 2015, 212, 166-167.	1.9	2
160	Glucan Synthase Inhibitors. Infectious Disease and Therapy, 2007, , 355-378.	0.0	2
161	Drug Concentration Monitoring in Mycobacterium avium Lung Disease: Problems with Methods and Conclusions. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 554-555.	2.5	1
162	An overview of drugs for the treatment of Mycobacterium kansasii pulmonary disease. Journal of Global Antimicrobial Resistance, 2022, 28, 71-77.	0.9	1

#	Article	IF	CITATIONS
163	Reply to "Pharmacokinetic Mismatch of Tuberculosis Drugs― Antimicrobial Agents and Chemotherapy, 2012, 56, 1667-1667.	1.4	O
164	Reply to "Breakpoints and Drug Exposure Are Inevitably Closely Linkedâ€: Antimicrobial Agents and Chemotherapy, 2015, 59, 1385-1385.	1.4	0
165	Reply to Zimenkov, "Mutation in luxR Family Transcriptional Regulator Rv0890c Is Not a Marker of Linezolid Resistance― Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	O
166	Dosing tuberculosis drugs in young children: the road ahead. The Lancet Child and Adolescent Health, 2019, 3, 590-592.	2.7	0
167	Detectable prednisolone is delayed in pericardial fluid, compared with plasma of patients with tuberculous pericarditis: A pilot study. IJC Heart and Vasculature, 2019, 22, 105-110.	0.6	0
168	Therapeutic drug monitoring and fluoroquinolones for multidrug-resistant tuberculosis. European Respiratory Journal, 2021, 57, 2004454.	3.1	0