Christian Klein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1241167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Ultra-Fast TSP on a CNT Heating Layer for Unsteady Temperature and Heat Flux Measurements in Subsonic Flows. Sensors, 2022, 22, 657.	3.8	4
2	Application of Temperature Sensitive Paint for time resolved investigations of laminar-to-turbulent transition on oscillating airfoils. , 2022, , .		2
3	Dynamic-stall measurements using time-resolved pressure-sensitive paint on double-swept rotor blades. Experiments in Fluids, 2022, 63, 1.	2.4	5
4	Incipient stall characterization from skin-friction maps. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 674-693.	2.8	6
5	Feasibility of skin-friction field measurements in a transonic wind tunnel using a global luminescent oil film. Experiments in Fluids, 2021, 62, 1.	2.4	15
6	Application of the temperature-sensitive paint method for quantitative measurements in water. Measurement Science and Technology, 2021, 32, 105301.	2.6	1
7	A robust method for reliable transition detection in temperature-sensitive paint data. Aerospace Science and Technology, 2021, 113, 106702.	4.8	15
8	Skin-Friction-Based Identification of the Critical Lines in a Transonic, High Reynolds Number Flow via Temperature-Sensitive Paint. Sensors, 2021, 21, 5106.	3.8	3
9	Experimental Analysis of the Performance of a Wind-Turbine Airfoil Using Temperature-Sensitive Paint. AIAA Journal, 2021, 59, 4449-4464.	2.6	4
10	Pressure and Temperature Sensitive Paints. Experimental Fluid Mechanics, 2021, , .	1.5	65
11	Taylor hypothesis applied to direct measurement of skin friction using data from Temperature Sensitive Paint. Experimental Thermal and Fluid Science, 2020, 110, 109913.	2.7	15
12	Experimental Analysis of a Wind-Turbine Rotor Blade Airfoil by means of Temperature-Sensitive Paint. , 2019, , .		6
13	Detection of Lambda- and Omega-vortices with the temperature-sensitive paint method in the late stage of controlled laminar–turbulent transition. Experiments in Fluids, 2019, 60, 1.	2.4	9
14	Comparison of LED and LASER based Lifetime Pressure-Sensitive Paint Measurement Techniques. , 2018, , .		2
15	Successful Application of Cryogenic Pressure Sensitive Paint Technique at ETW. , 2018, , .		16
16	Unit Reynolds number, Mach number and pressure gradient effects on laminar–turbulent transition in two-dimensional boundary layers. Experiments in Fluids, 2018, 59, 1.	2.4	14
17	Boundary-layer transition measurements on Mach-scaled helicopter rotor blades in climb. CEAS Aeronautical Journal, 2017, 8, 613-623.	1.7	14
18	Single-shot pressure-sensitive paint lifetime measurements on fast rotating blades using an optimized double-shutter technique. Experiments in Fluids, 2017, 58, 1.	2.4	30

CHRISTIAN KLEIN

#	Article	IF	CITATIONS
19	Global and local skin friction diagnostics from TSP surface patterns on an underwater cylinder in crossflow. Physics of Fluids, 2016, 28, .	4.0	36
20	Pressure Gradient and Nonadiabatic Surface Effects on Boundary Layer Transition. AIAA Journal, 2016, 54, 3465-3480.	2.6	24
21	Combination of Temperature Sensitive Paint and Carbon Nanotubes for Transition Detection. , 2015, , .		22
22	Fast-response underwater TSP investigation of subcritical instabilities of a cylinder in crossflow. Experiments in Fluids, 2015, 56, 1.	2.4	9
23	Europium 1,3-di(thienyl)propane-1,3-diones with outstanding properties for temperature sensing. Sensors and Actuators A: Physical, 2015, 233, 434-441.	4.1	59
24	Nonadiabatic Surface Effects on Transition Measurements Using Temperature-Sensitive Paints. AIAA Journal, 2015, 53, 1172-1187.	2.6	35
25	Application of pressure-sensitive paint for determination of the pressure field and calculation of the forces and moments of models in a wind tunnel. Experiments in Fluids, 2005, 39, 475-483.	2.4	110