Samson M Hagos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1240836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nature Communications, 2016, 7, 13429.	12.8	191
2	Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophysical Research Letters, 2015, 42, 7179-7186.	4.0	153
3	Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the <scp>AMIE/DYNAMO</scp> field campaign. Journal of Advances in Modeling Earth Systems, 2015, 7, 357-381.	3.8	145
4	Structure and Evolution of Mesoscale Convective Systems: Sensitivity to Cloud Microphysics in Convectionâ€Permitting Simulations Over the United States. Journal of Advances in Modeling Earth Systems, 2018, 10, 1470-1494.	3.8	145
5	Ocean Warming and Late-Twentieth-Century Sahel Drought and Recovery. Journal of Climate, 2008, 21, 3797-3814.	3.2	143
6	A projection of changes in landfalling atmospheric river frequency and extreme precipitation over western North America from the Large Ensemble CESM simulations. Geophysical Research Letters, 2016, 43, 1357-1363.	4.0	128
7	Sensitivity of U.S. summer precipitation to model resolution and convective parameterizations across gray zone resolutions. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2714-2733.	3.3	93
8	The impact of the diurnal cycle on the propagation of <scp>M</scp> addenâ€ <scp>J</scp> ulian <scp>O</scp> scillation convection across the <scp>M</scp> aritime <scp>C</scp> ontinent. Journal of Advances in Modeling Earth Systems, 2016, 8, 1552-1564.	3.8	86
9	Resolution and Dynamical Core Dependence of Atmospheric River Frequency in Global Model Simulations. Journal of Climate, 2015, 28, 2764-2776.	3.2	66
10	Bi-modal Structure and Variability of Large-Scale Diabatic Heating in the Tropics. Journals of the Atmospheric Sciences, 2009, 66, 3621-3640.	1.7	59
11	Exploring a Multiresolution Approach Using AMIP Simulations. Journal of Climate, 2015, 28, 5549-5574.	3.2	51
12	Observed Scaling in Clouds and Precipitation and Scale Incognizance in Regional to Global Atmospheric Models. Journal of Climate, 2013, 26, 9313-9333.	3.2	46
13	Toward the Dynamical Convergence on the Jet Stream in Aquaplanet AGCMs. Journal of Climate, 2015, 28, 6763-6782.	3.2	42
14	Error Characteristics of Two Grid Refinement Approaches in Aquaplanet Simulations: MPAS-A and WRF. Monthly Weather Review, 2013, 141, 3022-3036.	1.4	41
15	Advection, moistening, and shallowâ€toâ€deep convection transitions during the initiation and propagation of <scp>M</scp> addenâ€ <scp>J</scp> ulian <scp>O</scp> scillation. Journal of Advances in Modeling Earth Systems, 2014, 6, 938-949.	3.8	41
16	Diabatic heating, divergent circulation and moisture transport in the African monsoon system. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 411-425.	2.7	39
17	West African monsoon decadal variability and surface-related forcings: second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II). Climate Dynamics, 2016, 47, 3517-3545.	3.8	39
18	Spatial Variability of the Background Diurnal Cycle of Deep Convection around the GoAmazon2014/5 Field Campaign Sites. Journal of Applied Meteorology and Climatology, 2016, 55, 1579-1598.	1.5	38

SAMSON M HAGOS

#	Article	IF	CITATIONS
19	The Dependence of ITCZ Structure on Model Resolution and Dynamical Core in Aquaplanet Simulations. Journal of Climate, 2014, 27, 2375-2385.	3.2	36
20	Evaluation of convectionâ€permitting model simulations of cloud populations associated with the Maddenâ€Julian Oscillation using data collected during the AMIE/DYNAMO field campaign. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,052.	3.3	35
21	The regional impact of Land-Use Land-cover Change (LULCC) over West Africa from an ensemble of global climate models under the auspices of the WAMME2 project. Climate Dynamics, 2016, 47, 3547-3573.	3.8	31
22	Sources and pathways of the upscale effects on the Southern Hemisphere jet in MPASâ€CAM4 variableâ€resolution simulations. Journal of Advances in Modeling Earth Systems, 2016, 8, 1786-1805.	3.8	30
23	Exploring the impacts of physics and resolution on aquaâ€planet simulations from a nonhydrostatic global variableâ€resolution modeling framework. Journal of Advances in Modeling Earth Systems, 2016, 8, 1751-1768.	3.8	28
24	Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model. Climate Dynamics, 2014, 43, 2765-2775.	3.8	27
25	Environment and the Lifetime of Tropical Deep Convection in a Cloud-Permitting Regional Model Simulation. Journals of the Atmospheric Sciences, 2013, 70, 2409-2425.	1.7	25
26	Exploring the effects of a nonhydrostatic dynamical core in highâ€resolution aquaplanet simulations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3245-3265.	3.3	21
27	Characterizing Tropical Cyclones in the Energy Exascale Earth System Model Version 1. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002024.	3.8	20
28	A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds. Journal of Advances in Modeling Earth Systems, 2018, 10, 448-465.	3.8	19
29	Moist Thermodynamics of the Madden–Julian Oscillation in a Cloud-Resolving Simulation. Journal of Climate, 2011, 24, 5571-5583.	3.2	18
30	Assessing Impacts of PBL and Surface Layer Schemes in Simulating the Surface–Atmosphere Interactions and Precipitation over the Tropical Ocean Using Observations from AMIE/DYNAMO. Journal of Climate, 2016, 29, 8191-8210.	3.2	16
31	The Relationship between Precipitation and Precipitable Water in CMIP6 Simulations and Implications for Tropical Climatology and Change. Journal of Climate, 2021, 34, 1587-1600.	3.2	16
32	A Retrieval of Tropical Latent Heating Using the 3D Structure of Precipitation Features. Journal of Applied Meteorology and Climatology, 2016, 55, 1965-1982.	1.5	13
33	How Do Microphysical Processes Influence Largeâ€Scale Precipitation Variability and Extremes?. Geophysical Research Letters, 2018, 45, 1661-1667.	4.0	10
34	Impact of Rainfall on Tropical Cycloneâ€Induced Sea Surface Cooling. Geophysical Research Letters, 2022, 49, .	4.0	10
35	Characterization of Surface Heterogeneityâ€Induced Convection Using Cluster Analysis. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032550	3.3	9
36	Resolutionâ€dependent behavior of subgridâ€scale vertical transport in the Z hang―M c F arlane convection parameterization, Journal of Advances in Modeling Farth Systems, 2015, 7, 537-550	3.8	8

SAMSON M HAGOS

#	Article	IF	CITATIONS
37	Large-Scale Environmental Characteristics of MJOs that Strengthen and Weaken over the Maritime Continent. Journal of Climate, 2018, 31, 5731-5748.	3.2	8
38	A Zonal Migration of Monsoon Moisture Flux Convergence and the Strength of Maddenâ€Julian Oscillation Events. Geophysical Research Letters, 2019, 46, 8554-8562.	4.0	8
39	A Machine Learning Assisted Development of a Model for the Populations of Convective and Stratiform Clouds. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001798.	3.8	8
40	Moist Process Biases in Simulations of the Madden–Julian Oscillation Episodes Observed during the AMIE/DYNAMO Field Campaign. Journal of Climate, 2016, 29, 1091-1107.	3.2	7
41	Eddy fluxes and sensitivity of the water cycle to spatial resolution in idealized regional aquaplanet model simulations. Climate Dynamics, 2014, 42, 931-940.	3.8	6
42	Enhanced Predictability of Eastern North Pacific Tropical Cyclone Activity Using the ENSO Longitude Index. Geophysical Research Letters, 2020, 47, e2020GL088849.	4.0	6
43	Convectionâ€Permitting Hindcasting of Diurnal Variation of Meiâ€yu Rainfall Over East China With a Global Variableâ€Resolution Model. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034823.	3.3	6
44	South Asian monsoon precipitation in CMIP5: a link between inter-model spread and the representations of tropical convection. Climate Dynamics, 2019, 52, 1049-1061.	3.8	4
45	A Machineâ€Learningâ€Assisted Stochastic Cloud Population Model as a Parameterization of Cumulus Convection. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	3
46	Rainâ€Induced Stratification of the Equatorial Indian Ocean and Its Potential Feedback to the Atmosphere. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	3
47	Characterizing the Impact of Atmospheric Rivers on Aerosols in the Western U.S Geophysical Research Letters, 2022, 49, .	4.0	3
48	Impacts of Insolation and Soil Moisture on the Seasonality of Interactions Between the Maddenâ€Julian Oscillation and Maritime Continent. Journal of Geophysical Research D: Atmospheres, 2020, 125, .	3.3	2
49	The Influence of Shallow Cloud Populations on Transitions to Deep Convection in the Amazon. Journals of the Atmospheric Sciences, 2022, 79, 723-743.	1.7	2
50	An Observationally Trained Markov Model for MJO Propagation. Geophysical Research Letters, 2022, 49, .	4.0	1
51	The Madden–Julian Oscillation in the Energy Exascale Earth System Model Version 1. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	1