List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1240463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complex Organic Interstellar Molecules. Annual Review of Astronomy and Astrophysics, 2009, 47, 427-480.	24.3	1,265
2	THE <i>SPITZER</i> c2d LEGACY RESULTS: STAR-FORMATION RATES AND EFFICIENCIES; EVOLUTION AND LIFETIMES. Astrophysical Journal, Supplement Series, 2009, 181, 321-350.	7.7	1,244
3	An atomic and molecular database for analysis of submillimetre line observations. Astronomy and Astrophysics, 2005, 432, 369-379.	5.1	1,146
4	The photodissociation and chemistry of interstellar CO. Astrophysical Journal, 1988, 334, 771.	4.5	791
5	A Major Asymmetric Dust Trap in a Transition Disk. Science, 2013, 340, 1199-1202.	12.6	492
6	ALMA SURVEY OF LUPUS PROTOPLANETARY DISKS. I. DUST AND GAS MASSES. Astrophysical Journal, 2016, 828, 46.	4.5	478
7	Comprehensive models of diffuse interstellar clouds - Physical conditions and molecular abundances. Astrophysical Journal, Supplement Series, 1986, 62, 109.	7.7	436
8	CHEMICAL EVOLUTION OF STAR-FORMING REGIONS. Annual Review of Astronomy and Astrophysics, 1998, 36, 317-368.	24.3	435
9	THE <i>SPITZER</i> ICE LEGACY: ICE EVOLUTION FROM CORES TO PROTOSTARS. Astrophysical Journal, 2011, 740, 109.	4.5	423
10	Formation rates of complex organics in UV irradiated CH ₃ OH-rich ices. Astronomy and Astrophysics, 2009, 504, 891-913.	5.1	378
11	Hydrogenation reactions in interstellar COÂice analogues. Astronomy and Astrophysics, 2009, 505, 629-639.	5.1	343
12	An old disk still capable of forming a planetary system. Nature, 2013, 493, 644-646.	27.8	285
13	Interstellar Water Chemistry: From Laboratory to Observations. Chemical Reviews, 2013, 113, 9043-9085.	47.7	278
14	ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii. Astrophysical Journal, 2018, 859, 21.	4.5	268
15	The ALMA Protostellar Interferometric Line Survey (PILS). Astronomy and Astrophysics, 2016, 595, A117.	5.1	267
16	Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko. Nature, 2015, 526, 678-681.	27.8	260
17	Detection of the Water Reservoir in a Forming Planetary System. Science, 2011, 334, 338-340.	12.6	258
18	An ALMA Survey of Protoplanetary Disks in the Ïf Orionis Cluster. Astronomical Journal, 2017, 153, 240.	4.7	243

#	Article	IF	CITATIONS
19	Photodesorption of ices I: CO, \$f N_{2}\$, and \$f CO_{2}\$. Astronomy and Astrophysics, 2009, 496, 281-293.	5.1	227
20	DETECTION OF THE SIMPLEST SUGAR, GLYCOLALDEHYDE, IN A SOLAR-TYPE PROTOSTAR WITH ALMA. Astrophysical Journal Letters, 2012, 757, L4.	8.3	207
21	c2dSpitzerIRS Spectra of Disks around T Tauri Stars. I. Silicate Emission and Grain Growth. Astrophysical Journal, 2006, 639, 275-291.	4.5	206
22	Laboratory Evidence for Efficient Water Formation in Interstellar Ices. Astrophysical Journal, 2008, 686, 1474-1479.	4.5	206
23	Spectroastrometric Imaging of Molecular Gas within Protoplanetary Disk Gaps. Astrophysical Journal, 2008, 684, 1323-1329.	4.5	194
24	The warm gas atmosphere of the HDÂ100546 disk seen by <i>Herschel</i> . Astronomy and Astrophysics, 2012, 541, A91.	5.1	185
25	<i>HERSCHEL</i> SURVEY OF GALACTIC OH ⁺ , H ₂ O ⁺ , AND H ₃ O ⁺ : PROBING THE MOLECULAR HYDROGEN FRACTION AND COSMIC-RAY IONIZATION RATE. Astrophysical Journal, 2015, 800, 40.	4.5	183
26	Photoprocesses in protoplanetary disks. Faraday Discussions, 2006, 133, 231.	3.2	181
27	H ₂ O and OH Gas in the Terrestrial Planet-forming Zones of Protoplanetary Disks. Astrophysical Journal, 2008, 676, L49-L52.	4.5	180
28	Fast and inefficient star formation due to short-lived molecular clouds and rapid feedback. Nature, 2019, 569, 519-522.	27.8	178
29	ALMA unveils rings and gaps in the protoplanetary system HD 169142: signatures of two giant protoplanets. Astronomy and Astrophysics, 2017, 600, A72.	5.1	176
30	The <i>Spitzer</i> c2d Survey of Weakâ€Line T Tauri Stars. II. New Constraints on the Timescale for Planet Building. Astrophysical Journal, 2007, 667, 308-328.	4.5	173
31	The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars. II. A Statistical Characterization of Class 0 and Class I Protostellar Disks. Astrophysical Journal, 2020, 890, 130.	4.5	170
32	Photodesorption of CO Ice. Astrophysical Journal, 2007, 662, L23-L26.	4.5	166
33	Resolved gas cavities in transitional disks inferred from CO isotopologs with ALMA. Astronomy and Astrophysics, 2016, 585, A58.	5.1	166
34	THE RADIAL DISTRIBUTION OF H ₂ AND CO IN TW HYA AS REVEALED BY RESOLVED ALMA OBSERVATIONS OF CO ISOTOPOLOGUES. Astrophysical Journal, 2016, 823, 91.	4.5	163
35	Photodesorption of water ice. Astronomy and Astrophysics, 2008, 491, 907-916.	5.1	157
36	A COLD COMPLEX CHEMISTRY TOWARD THE LOW-MASS PROTOSTAR B1-b: EVIDENCE FOR COMPLEX MOLECULE PRODUCTION IN ICES. Astrophysical Journal, 2010, 716, 825-834.	4.5	156

#	Article	IF	CITATIONS
37	Probing dust grain evolution in IM Lupi's circumstellar disc. Astronomy and Astrophysics, 2008, 489, 633-650.	5.1	145
38	Lupus disks with faint CO isotopologues: low gas/dust or high carbon depletion?. Astronomy and Astrophysics, 2017, 599, A113.	5.1	142
39	Cas density drops inside dust cavities of transitional disks around young stars observed with ALMA. Astronomy and Astrophysics, 2015, 579, A106.	5.1	139
40	THE c2d <i>SPITZER</i> SPECTROSCOPIC SURVEY OF ICES AROUND LOW-MASS YOUNG STELLAR OBJECTS. IV. NH ₃ AND CH ₃ OH. Astrophysical Journal, 2010, 718, 1100-1117.	4.5	136
41	Evidence for a correlation between mass accretion rates onto young stars and the mass of their protoplanetary disks. Astronomy and Astrophysics, 2016, 591, L3.	5.1	134
42	The molecular composition of the planet-forming regions of protoplanetary disks across the luminosity regime. Astronomy and Astrophysics, 2015, 582, A88.	5.1	133
43	Microscopic simulation of methanol and formaldehyde ice formation in cold dense cores. Astronomy and Astrophysics, 2009, 508, 275-287.	5.1	132
44	The <i>Spitzer</i> c2d Survey of Large, Nearby, Interstellar Clouds. XI. Lupus Observed with IRAC and MIPS. Astrophysical Journal, Supplement Series, 2008, 177, 551-583.	7.7	127
45	Protoplanetary disk masses from CO isotopologue line emission. Astronomy and Astrophysics, 2014, 572, A96.	5.1	125
46	Setting the volatile composition of (exo)planet-building material. Astronomy and Astrophysics, 2016, 595, A83.	5.1	123
47	A <i>SPITZER</i> c2d LEGACY SURVEY TO IDENTIFY AND CHARACTERIZE DISKS WITH INNER DUST HOLES. Astrophysical Journal, 2010, 718, 1200-1223.	4.5	116
48	Dust masses of young disks: constraining the initial solid reservoir for planet formation. Astronomy and Astrophysics, 2020, 640, A19.	5.1	114
49	Physical properties of dusty protoplanetary disks in Lupus: evidence for viscous evolution?. Astronomy and Astrophysics, 2017, 606, A88.	5.1	109
50	Gas structure inside dust cavities of transition disks: Ophiuchus IRS 48 observed by ALMA. Astronomy and Astrophysics, 2014, 562, A26.	5.1	108
51	Different dust and gas radial extents in protoplanetary disks: consistent models of grain growth and CO emission. Astronomy and Astrophysics, 2017, 605, A16.	5.1	107
52	THE <i>SPITZER</i> c2d SURVEY OF WEAK-LINE T TAURI STARS. III. THE TRANSITION FROM PRIMORDIAL DISKS TO DEBRIS DISKS. Astrophysical Journal, 2010, 724, 835-854.	4.5	103
53	The VLA Nascent Disk and Multiplicity Survey of Perseus Protostars (VANDAM). IV. Free–Free Emission from Protostars: Links to Infrared Properties, Outflow Tracers, and Protostellar Disk Masses. Astrophysical Journal, Supplement Series, 2018, 238, 19.	7.7	103
54	Determining protoplanetary disk gas masses from CO isotopologues line observations. Astronomy and Astrophysics, 2016, 594, A85.	5.1	100

#	Article	IF	CITATIONS
55	Molecular Cloud Structure in the Magellanic Clouds: Effect of Metallicity. Astrophysical Journal, 1998, 498, 735-756.	4.5	100
56	Water in star-forming regions: physics and chemistry from clouds to disks as probed by <i>Herschel</i> spectroscopy. Astronomy and Astrophysics, 2021, 648, A24.	5.1	98
57	DIGIT survey of far-infrared lines from protoplanetary disks. Astronomy and Astrophysics, 2013, 559, A77.	5.1	95
58	Water formation at low temperatures by surface O2 hydrogenation I: characterization of ice penetration. Physical Chemistry Chemical Physics, 2010, 12, 12065.	2.8	92
59	Cosmic-ray Induced Destruction of CO in Star-forming Galaxies. Astrophysical Journal, 2017, 839, 90.	4.5	92
60	The ALMA-PILS survey: First detections of ethylene oxide, acetone and propanal toward the low-mass protostar IRAS 16293-2422. Astronomy and Astrophysics, 2017, 597, A53.	5.1	89
61	ALMA imaging of the CO snowline of the HD 163296 disk with DCO ⁺ . Astronomy and Astrophysics, 2013, 557, A132.	5.1	88
62	New Insights into the Nature of Transition Disks from a Complete Disk Survey of the Lupus Star-forming Region. Astrophysical Journal, 2018, 854, 177.	4.5	88
63	Detection of abundant solid methanol toward young low mass stars. Astronomy and Astrophysics, 2003, 404, L17-L20.	5.1	88
64	MEASURING PROTOPLANETARY DISK ACCRETION WITH H I PFUND Î ² . Astrophysical Journal, 2013, 769, 21.	4.5	87
65	An ALMA Survey of DCN/H ¹³ CN and DCO ⁺ /H ¹³ CO ⁺ in Protoplanetary Disks. Astrophysical Journal, 2017, 835, 231.	4.5	87
66	The ALMA-PILS survey: inventory of complex organic molecules towards IRAS 16293–2422 A. Astronomy and Astrophysics, 2020, 635, A48.	5.1	87
67	A RECENT ACCRETION BURST IN THE LOW-MASS PROTOSTAR IRAS 15398-3359: ALMA IMAGING OF ITS RELATED CHEMISTRY. Astrophysical Journal Letters, 2013, 779, L22.	8.3	85
68	DOUBLE DCO ⁺ RINGS REVEAL CO ICE DESORPTION IN THE OUTER DISK AROUND IM LUP. Astrophysical Journal, 2015, 810, 112.	4.5	83
69	The ALMA-PILS survey: detection of CH3NCO towards the low-mass protostar IRAS 16293â [~] 2422 and laboratory constraints on its formation. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2219-2229.	4.4	83
70	VLT-CRIRES SURVEY OF ROVIBRATIONAL CO EMISSION FROM PROTOPLANETARY DISKS. Astrophysical Journal, 2013, 770, 94.	4.5	82
71	Formation of Glycerol through Hydrogenation of CO Ice under Prestellar Core Conditions. Astrophysical Journal, 2017, 842, 52.	4.5	80
72	Peering into the formation history of <i>î²</i> Pictoris b with VLTI/GRAVITY long-baseline interferometry. Astronomy and Astrophysics, 2020, 633, A110.	5.1	78

#	Article	IF	CITATIONS
73	Sensitive limits on the abundance of cold water vapor inÂtheÂDMÂTauri protoplanetary disk. Astronomy and Astrophysics, 2010, 521, L33.	5.1	76
74	FIRST DETECTION OF NEAR-INFRARED LINE EMISSION FROM ORGANICS IN YOUNG CIRCUMSTELLAR DISKS. Astrophysical Journal, 2012, 747, 92.	4.5	72
75	Single peaked CO emission line profiles from the inner regions of protoplanetary disks. Astronomy and Astrophysics, 2011, 527, A119.	5.1	72
76	Gas versus dust sizes of protoplanetary discs: effects of dust evolution. Astronomy and Astrophysics, 2019, 629, A79.	5.1	71
77	A primordial origin for molecular oxygen in comets: a chemical kinetics study of the formation and survival of O ₂ ice from clouds to discs. Monthly Notices of the Royal Astronomical Society, 2016, 462, S99-S115.	4.4	70
78	Robustness of N ₂ H ⁺ as tracer of the CO snowline. Astronomy and Astrophysics, 2017, 599, A101.	5.1	70
79	Physical Properties of Molecular Clouds at 2 pc Resolution in the Low-metallicity Dwarf Galaxy NGC 6822 and the Milky Way. Astrophysical Journal, 2017, 835, 278.	4.5	69
80	Evidence for a massive dust-trapping vortex connected to spirals. Astronomy and Astrophysics, 2018, 619, A161.	5.1	69
81	A non-energetic mechanism for glycine formation in the interstellar medium. Nature Astronomy, 2021, 5, 197-205.	10.1	69
82	Simultaneous hydrogenation and UV-photolysis experiments of NO in CO-rich interstellar ice analogues; linking HNCO, OCN ^{â^'} , NH ₂ CHO, and NH ₂ OH. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4297-4309.	4.4	67
83	Survey of Cold Water Lines in Protoplanetary Disks: Indications of Systematic Volatile Depletion. Astrophysical Journal, 2017, 842, 98.	4.5	66
84	Observations and modelling of CO and [C i] in protoplanetary disks. Astronomy and Astrophysics, 2016, 588, A108.	5.1	64
85	A SUBSTELLAR-MASS PROTOSTAR AND ITS OUTFLOW OF IRAS 15398–3359 REVEALED BY SUBARCSECOND-RESOLUTION OBSERVATIONS of H ₂ CO AND CCH. Astrophysical Journal, 2014, 795, 152.	4.5	61
86	ALMA survey of Class II protoplanetary disks in Corona Australis: a young region with low disk masses. Astronomy and Astrophysics, 2019, 626, A11.	5.1	61
87	Molecular dynamics simulations of the ice temperature dependence of water ice photodesorption. Journal of Chemical Physics, 2010, 132, .	3.0	60
88	The (w)hole survey: An unbiased sample study of transition disk candidates based on <i>Spitzer</i> catalogs. Astronomy and Astrophysics, 2016, 592, A126.	5.1	60
89	Bright C ₂ H emission in protoplanetary discs in Lupus: high volatile C/O > 1 ratios. Astronomy and Astrophysics, 2019, 631, A69.	5.1	59
90	Constraining the Nature of the PDS 70 Protoplanets with VLTI/GRAVITY ^{â^—} . Astronomical Journal, 2021, 161, 148.	4.7	59

#	Article	IF	CITATIONS
91	MOLECULAR OXYGEN IN OORT CLOUD COMET 1P/HALLEY. Astrophysical Journal Letters, 2015, 815, L11.	8.3	55
92	Testing particle trapping in transition disks with ALMA. Astronomy and Astrophysics, 2015, 584, A16.	5.1	55
93	High-resolution ALMA Observations of HD 100546: Asymmetric Circumstellar Ring and Circumplanetary Disk Upper Limits. Astrophysical Journal, 2019, 871, 48.	4.5	54
94	Reactive Desorption of CO Hydrogenation Products under Cold Pre-stellar Core Conditions. Astrophysical Journal, 2018, 853, 102.	4.5	51
95	Complex organic molecules in low-mass protostars on Solar System scales. Astronomy and Astrophysics, 2020, 639, A87.	5.1	51
96	A 30 AU RADIUS CO GAS HOLE IN THE DISK AROUND THE HERBIG Ae STAR Oph IRS 48. Astrophysical Journal, 2012, 744, 116.	4.5	50
97	The Herschel-PACS Legacy of Low-mass Protostars: The Properties of Warm and Hot Gas Components and Their Origin in Far-UV Illuminated Shocks. Astrophysical Journal, Supplement Series, 2018, 235, 30.	7.7	50
98	An experimental study of the surface formation of methane in interstellar molecular clouds. Nature Astronomy, 2020, 4, 781-785.	10.1	50
99	[O I] 63 <i>μ</i> m JETS IN CLASS 0 SOURCES DETECTED BY <i>HERSCHEL</i> . Astrophysical Journal, 2015, 801, 121.	4.5	49
100	Methanol and its Relation to the Water Snowline in the Disk around the Young Outbursting Star V883 Ori. Astrophysical Journal Letters, 2018, 864, L23.	8.3	49
101	CN rings in full protoplanetary disks around young stars as probes of disk structure. Astronomy and Astrophysics, 2018, 609, A93.	5.1	49
102	Temperature Structures of Embedded Disks: Young Disks in Taurus Are Warm. Astrophysical Journal, 2020, 901, 166.	4.5	49
103	THE DEPLETION OF WATER DURING DISPERSAL OF PLANET-FORMING DISK REGIONS. Astrophysical Journal, 2017, 834, 152.	4.5	48
104	Chronology of Episodic Accretion in Protostars—An ALMA Survey of the CO and H ₂ O Snowlines. Astrophysical Journal, 2019, 884, 149.	4.5	47
105	V1094 Scorpii: A rare giant multi-ringed disk around a T Tauri star. Astronomy and Astrophysics, 2018, 616, A88.	5.1	45
106	Chemistry in low-mass protostellar and protoplanetary regions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12249-12256.	7.1	44
107	Unveiling the physical conditions of the youngest disks. Astronomy and Astrophysics, 2018, 615, A83.	5.1	44
108	High gas-to-dust size ratio indicating efficient radial drift in the mm-faint CX Tauri disk. Astronomy and Astrophysics, 2019, 626, L2.	5.1	43

#	Article	IF	CITATIONS
109	Probing inner and outer disk misalignments in transition disks. Astronomy and Astrophysics, 2022, 658, A183.	5.1	42
110	Spectroscopic properties of young stellar objects in the Lupus molecular clouds. Monthly Notices of the Royal Astronomical Society, 2011, 418, 1194-1207.	4.4	40
111	Warm H ₂ O and OH in the disk around the Herbig star HD 163296. Astronomy and Astrophysics, 2012, 544, L9.	5.1	40
112	CO ₂ infrared emission as a diagnostic of planet-forming regions of disks. Astronomy and Astrophysics, 2017, 601, A36.	5.1	40
113	Observed sizes of planet-forming disks trace viscous spreading. Astronomy and Astrophysics, 2020, 640, A5.	5.1	39
114	Disks and outflows in CO rovibrational emission from embedded, low-mass young stellar objects. Astronomy and Astrophysics, 2011, 533, A112.	5.1	37
115	HIGH D ₂ O/HDO RATIO IN THE INNER REGIONS OF THE LOW-MASS PROTOSTAR NGC 1333 IRAS2A. Astrophysical Journal Letters, 2014, 792, L5.	8.3	37
116	The TW Hya Rosetta Stone Project. III. Resolving the Gaseous Thermal Profile of the Disk. Astrophysical Journal, 2021, 908, 8.	4.5	35
117	Infrared spectra of complex organic molecules in astronomically relevant ice matrices. Astronomy and Astrophysics, 2018, 611, A35.	5.1	34
118	Disk masses in the Orion Molecular Cloud-2: distinguishing time and environment. Astronomy and Astrophysics, 2019, 628, A85.	5.1	34
119	Complex organic molecules in low-mass protostars on Solar System scales. Astronomy and Astrophysics, 2021, 650, A150.	5.1	34
120	Cold gas as an ice diagnostic toward low mass protostars. Astronomy and Astrophysics, 2009, 494, L13-L16.	5.1	34
121	<i>HERSCHEL</i> HIFI OBSERVATIONS OF O ₂ TOWARD ORION: SPECIAL CONDITIONS FOR SHOCK ENHANCED EMISSION. Astrophysical Journal, 2014, 793, 111.	4.5	33
122	Protoplanetary disk masses in NGC 2024: Evidence for two populations. Astronomy and Astrophysics, 2020, 640, A27.	5.1	33
123	A Multi-wavelength Analysis of Dust and Gas in the SR 24S Transition Disk. Astrophysical Journal, 2017, 839, 99.	4.5	32
124	Probing midplane CO abundance and gas temperature with DCO ⁺ in the protoplanetary disk around HD 169142. Astronomy and Astrophysics, 2018, 614, A106.	5.1	31
125	The ALMA Lupus protoplanetary disk survey: evidence for compact gas disks and molecular rings from CN. Astronomy and Astrophysics, 2019, 623, A150.	5.1	31
126	Photodesorption of H ₂ 0, HDO, and D ₂ 0 ice and its impact on fractionation. Astronomy and Astrophysics, 2015, 575, A121.	5.1	30

#	Article	IF	CITATIONS
127	Metallicity Dependence of the H/H ₂ and C ⁺ /C/CO Distributions in a Resolved Self-regulating Interstellar Medium. Astrophysical Journal, 2021, 920, 44.	4.5	30
128	A New Planet Candidate Detected in a Dust Gap of the Disk around HD 163296 through Localized Kinematic Signatures: An Observational Validation of the discminer. Astrophysical Journal, 2022, 928, 2.	4.5	30
129	First Results of an ALMA Band 10 Spectral Line Survey of NGC 6334I: Detections of Glycolaldehyde (HC(O)CH ₂ OH) and a New Compact Bipolar Outflow in HDO and CS. Astrophysical Journal Letters, 2018, 863, L35.	8.3	29
130	Formation of interstellar propanal and 1-propanol ice: a pathway involving solid-state CO hydrogenation. Astronomy and Astrophysics, 2019, 627, A1.	5.1	29
131	Formation of complex molecules in translucent clouds: acetaldehyde, vinyl alcohol, ketene, and ethanol via "nonenergetic―processing of C ₂ H ₂ ice. Astronomy and Astrophysics, 2020, 635, A199.	5.1	29
132	Temperature profiles of young disk-like structures. Astronomy and Astrophysics, 2020, 633, A7.	5.1	27
133	Astrochemistry: overview and challenges. Proceedings of the International Astronomical Union, 2017, 13, 3-22.	0.0	26
134	The Co-evolution of Disks and Stars in Embedded Stages: The Case of the Very-low-mass Protostar IRAS 15398–3359. Astrophysical Journal Letters, 2018, 864, L25.	8.3	26
135	Molecules with ALMA at Planet-forming Scales. XX. The Massive Disk around GM Aurigae. Astrophysical Journal, Supplement Series, 2021, 257, 20.	7.7	26
136	CO in Protostars (COPS): Herschel-SPIRE Spectroscopy of Embedded Protostars ^{â^—} . Astrophysical Journal, 2018, 860, 174.	4.5	24
137	Impact of vertical gas accretion on the carbon-to-oxygen ratio of gas giant atmospheres. Astronomy and Astrophysics, 2020, 635, A68.	5.1	24
138	A dusty filament and turbulent CO spirals in HD 135344B - SAO 206462. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3789-3809.	4.4	24
139	Prestellar grain-surface origins of deuterated methanol in comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4901-4920.	4.4	24
140	Chemically tracing the water snowline in protoplanetary disks with HCO ⁺ . Astronomy and Astrophysics, 2021, 646, A3.	5.1	23
141	An ALMA Survey of λ Orionis Disks: From Supernovae to Planet Formation. Astronomical Journal, 2020, 160, 248.	4.7	23
142	Solving Grain Size Inconsistency between ALMA Polarization and VLA Continuum in the Ophiuchus IRS 48 Protoplanetary Disk. Astrophysical Journal, 2020, 900, 81.	4.5	23
143	Linking interstellar and cometary O ₂ : a deep search for ¹⁶ O ¹⁸ O in the solar-type protostar IRAS 16293–2422. Astronomy and Astrophysics, 2018, 618, A11.	5.1	22
144	Modeling accretion shocks at the disk–envelope interface. Astronomy and Astrophysics, 2021, 653, A159.	5.1	21

#	Article	IF	CITATIONS
145	The TW Hya Rosetta Stone Project. II. Spatially Resolved Emission of Formaldehyde Hints at Low-temperature Gas-phase Formation. Astrophysical Journal, 2021, 906, 111.	4.5	19
146	The Disc Miner. Astronomy and Astrophysics, 2021, 650, A179.	5.1	19
147	The VLA/ALMA Nascent Disk And Multiplicity (VANDAM) Survey of Orion Protostars. V. A Characterization of Protostellar Multiplicity. Astrophysical Journal, 2022, 925, 39.	4.5	19
148	The mass and size of Herbig disks as seen by ALMA. Astronomy and Astrophysics, 2022, 658, A112.	5.1	19
149	Gas temperature structure across transition disk cavities. Astronomy and Astrophysics, 2022, 663, A23.	5.1	18
150	H ₂ chemistry in interstellar ices: the case of CO ice hydrogenation in UV irradiated CO:H ₂ ice mixtures. Astronomy and Astrophysics, 2018, 617, A87.	5.1	17
151	A cryogenic ice setup to simulate carbon atom reactions in interstellar ices. Review of Scientific Instruments, 2020, 91, 054501.	1.3	17
152	Dependence of X _{CO} on Metallicity, Intensity, and Spatial Scale in a Self-regulated Interstellar Medium. Astrophysical Journal, 2022, 931, 28.	4.5	17
153	Probing planet formation and disk substructures in the inner disk of Herbig Ae stars with CO rovibrational emission. Astronomy and Astrophysics, 2019, 631, A133.	5.1	16
154	The TW Hya Rosetta Stone Project. I. Radial and Vertical Distributions of DCN and DCO ⁺ . Astronomical Journal, 2021, 161, 38.	4.7	16
155	Tracing pebble drift and trapping using radial carbon depletion profiles in protoplanetary disks. Astronomy and Astrophysics, 2022, 660, A126.	5.1	16
156	Probing the protoplanetary disk gas surface density distribution with ¹³ CO emission. Astronomy and Astrophysics, 2018, 619, A113.	5.1	14
157	A UV-to-NIR Study of Molecular Gas in the Dust Cavity around RY Lupi. Astrophysical Journal, 2018, 855, 98.	4.5	13
158	Hydrogenation of Accreting C Atoms and CO Molecules–Simulating Ketene and Acetaldehyde Formation Under Dark and Translucent Cloud Conditions. Astrophysical Journal, 2022, 924, 110.	4.5	13
159	Survey of Orion Disks with ALMA (SODA). Astronomy and Astrophysics, 2022, 661, A53.	5.1	13
160	Importance of source structure on complex organics emission. Astronomy and Astrophysics, 2022, 663, A58.	5.1	13
161	Importance of source structure on complex organics emission. Astronomy and Astrophysics, 2022, 662, A67.	5.1	12
162	Star and planet-formation with ALMA: an overview. Astrophysics and Space Science, 2008, 313, 15-22.	1.4	10

#	Article	IF	CITATIONS
163	Probing UV-sensitive Pathways for CN and HCN Formation in Protoplanetary Disks with the Hubble Space Telescope. Astronomical Journal, 2020, 159, 168.	4.7	10
164	Exploring HNC and HCN line emission as probes of the protoplanetary disk temperature. Astronomy and Astrophysics, 2021, 647, A118.	5.1	10
165	The TW Hya Rosetta Stone Project IV: A Hydrocarbon-rich Disk Atmosphere. Astrophysical Journal, 2021, 911, 29.	4.5	10
166	Diffuse, Translucent & amp; High-Latitude Clouds: Theoretical Considerations. , 1992, , 143-151.		10
167	Imaging the Water Snowline around Protostars with Water and HCO ⁺ Isotopologues. Astrophysical Journal, 2022, 924, 5.	4.5	10
168	CO isotopolog line fluxes of viscously evolving disks. Astronomy and Astrophysics, 2021, 649, A95.	5.1	9
169	Organic matter in space - An overview. Proceedings of the International Astronomical Union, 2008, 4, 3-16.	0.0	7
170	Evidence for episodic warm outflowing CO gas from the intermediate-mass young stellar object IRAS 08470-4321â~ Monthly Notices of the Royal Astronomical Society, 0, , no-no.	4.4	7
171	A New Method for Simulating Photoprocesses in Astrochemical Models. Astrophysical Journal, 2021, 910, 72.	4.5	5
172	The IAU Strategic Plan for 2020-2030: OAO. Proceedings of the International Astronomical Union, 2018, 14, 546-548.	0.0	4
173	The IAU Strategic Plan for 2020-2030: OAD. Proceedings of the International Astronomical Union, 2018, 14, 560-562.	0.0	4
174	On the origin of O2 and other volatile species in comets. Proceedings of the International Astronomical Union, 2017, 13, 187-195.	0.0	3
175	Astronomy and the IAU in the next century. Proceedings of the International Astronomical Union, 2018, 13, 523-529.	0.0	2
176	Photodesorption of ices – Releasing organic precursors into the gas phase. Proceedings of the International Astronomical Union, 2008, 4, 449-450.	0.0	1
177	Laboratory astrophysics: Key to understanding the Universe. Proceedings of the International Astronomical Union, 2019, 15, 3-14.	0.0	1
178	The molecular universe: from observations to laboratory and back. Proceedings of the International Astronomical Union, 2015, 11, 299-304.	0.0	0
179	Alexander Dalgarno: From atomic and molecular physics to astronomy and aeronomy. Proceedings of the United States of America, 2015, 112, 9498-9499.	7.1	0
180	The chemical connection between 67P/C-G and IRAS 16293-2422. Proceedings of the International Astronomical Union, 2017, 13, 196-201.	0.0	0

#	Article	IF	CITATIONS
181	Infrared spectra of complex organic molecules in astronomically relevant ice matrices. Proceedings of the International Astronomical Union, 2019, 15, 356-357.	0.0	О
182	Laboratory data in support of JWST observations of interstellar ices. Proceedings of the International Astronomical Union, 2019, 15, 420-421.	0.0	0
183	H ₂ photochemistry in interstellar ices:The formation of HCO in UV irradiated CO:H ₂ ice mixtures. Proceedings of the International Astronomical Union, 2019, 15, 404-405.	0.0	0
184	The formation of the building blocks of peptides on interstellar dust grains. Proceedings of the International Astronomical Union, 2019, 15, 216-219.	0.0	0
185	Synthesis of solid-state complex organic molecules through accretion of simple species at low temperatures. Proceedings of the International Astronomical Union, 2019, 15, 46-50.	0.0	0
186	The IAU and Education: Introduction. Proceedings of the International Astronomical Union, 2019, 15, 2-7.	0.0	0