
Cathryn L Haigh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1240427/publications.pdf Version: 2024-02-01

CATHDAN | HAICH

#	Article	IF	CITATIONS
1	A Functional Role for Aβ in Metal Homeostasis? Nâ€Truncation and Highâ€Affinity Copper Binding. Angewandte Chemie - International Edition, 2015, 54, 10460-10464.	13.8	102
2	Sporadic Creutzfeldt-Jakob disease prion infection of human cerebral organoids. Acta Neuropathologica Communications, 2019, 7, 90.	5.2	67
3	Copper binding is the governing determinant of prion protein turnover. Molecular and Cellular Neurosciences, 2005, 30, 186-196.	2.2	50
4	Increased Proportions of C1 Truncated Prion Protein Protect Against Cellular M1000 Prion Infection. Journal of Neuropathology and Experimental Neurology, 2009, 68, 1125-1135.	1.7	46
5	Human cerebral organoids as a therapeutic drug screening model for Creutzfeldt–Jakob disease. Scientific Reports, 2021, 11, 5165.	3.3	40
6	Dominant roles of the polybasic proline motif and copper in the PrP23-89-mediated stress protection response. Journal of Cell Science, 2009, 122, 1518-1528.	2.0	39
7	PrPC-related signal transduction is influenced by copper, membrane integrity and the alpha cleavage site. Cell Research, 2009, 19, 1062-1078.	12.0	36
8	Prion protein reduces both oxidative and non-oxidative copper toxicity. Journal of Neurochemistry, 2006, 98, 677-689.	3.9	35
9	Copper-dependent co-internalization of the prion protein and glypican-1. Journal of Neurochemistry, 2006, 98, 1445-1457.	3.9	32
10	Anionic Phospholipid Interactions of the Prion Protein N Terminus Are Minimally Perturbing and Not Driven Solely by the Octapeptide Repeat Domain. Journal of Biological Chemistry, 2010, 285, 32282-32292.	3.4	31
11	Acute exposure to prion infection induces transient oxidative stress progressing to be cumulatively deleterious with chronic propagation in vitro. Free Radical Biology and Medicine, 2011, 51, 594-608.	2.9	31
12	MEK1 transduces the prion protein N2 fragment antioxidant effects. Cellular and Molecular Life Sciences, 2015, 72, 1613-1629.	5.4	30
13	Neutron Reflectometry Studies Define Prion Protein N-terminal Peptide Membrane Binding. Biophysical Journal, 2014, 107, 2313-2324.	0.5	27
14	Near-Infrared Fluorescence Imaging of Apoptotic Neuronal Cell Death in a Live Animal Model of Prion Disease. ACS Chemical Neuroscience, 2010, 1, 720-727.	3.5	25
15	Neuronal excitatory-to-inhibitory balance is altered in cerebral organoid models of genetic neurological diseases. Molecular Brain, 2021, 14, 156.	2.6	25
16	Copper, endoproteolytic processing of the prion protein and cell signalling. Frontiers in Bioscience - Landmark, 2010, 15, 1086.	3.0	23
17	Neuronal maturation reduces the type I IFN response to orthobunyavirus infection and leads to increased apoptosis of human neurons. Journal of Neuroinflammation, 2019, 16, 229.	7.2	22
18	Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression. Cellular and Molecular Life Sciences, 2018, 75, 3231-3249.	5.4	20

CATHRYN L HAIGH

#	Article	IF	CITATIONS
19	Pathogenic Prion Protein Isoforms Are Not Present in Cerebral Organoids Generated from Asymptomatic Donors Carrying the E200K Mutation Associated with Familial Prion Disease. Pathogens, 2020, 9, 482.	2.8	19
20	The Prion Protein N1 and N2 Cleavage Fragments Bind to Phosphatidylserine and Phosphatidic Acid; Relevance to Stress-Protection Responses. PLoS ONE, 2015, 10, e0134680.	2.5	18
21	Regulation of Prion Protein Expression by Noncoding Regions of the Prnp Gene. Journal of Molecular Biology, 2007, 368, 915-927.	4.2	17
22	Optical Imaging Detects Apoptosis in the Brain and Peripheral Organs of Prion-Infected Mice. Journal of Neuropathology and Experimental Neurology, 2011, 70, 143-150.	1.7	17
23	Rottlerin inhibits La Crosse virus-induced encephalitis in mice and blocks release of replicating virus from the Golgi body in neurons. Nature Microbiology, 2021, 6, 1398-1409.	13.3	16
24	Prion subcellular fractionation reveals infectivity spectrum, with a high titre-low PrPres level disparity. Molecular Neurodegeneration, 2012, 7, 18.	10.8	15
25	A 2-Substituted 8-Hydroxyquinoline Stimulates Neural Stem Cell Proliferation by Modulating ROS Signalling. Cell Biochemistry and Biophysics, 2016, 74, 297-306.	1.8	14
26	Cytosolic caspases mediate mislocalised SOD2 depletion in an <i>in vitro</i> model of chronic prion infection. DMM Disease Models and Mechanisms, 2013, 6, 952-63.	2.4	13
27	The prion protein regulates beta-amyloid-mediated self-renewal of neural stem cells in vitro. Stem Cell Research and Therapy, 2015, 6, 60.	5.5	13
28	Prion protein N1 cleavage peptides stimulate microglial interaction with surrounding cells. Scientific Reports, 2020, 10, 6654.	3.3	13
29	Endoproteolytic cleavage as a molecular switch regulating and diversifying prion protein function. Neural Regeneration Research, 2016, 11, 238.	3.0	12
30	Microwave Synthesis of Prion Protein Fragments up to 111 Amino Acids in Length Generates Biologically Active Peptides. International Journal of Peptide Research and Therapeutics, 2012, 18, 21-29.	1.9	11
31	Simplified Murine 3D Neuronal Cultures for Investigating Neuronal Activity and Neurodegeneration. Cell Biochemistry and Biophysics, 2017, 75, 3-13.	1.8	11
32	Using our mini-brains: cerebral organoids as an improved cellular model for human prion disease. Neural Regeneration Research, 2020, 15, 1019.	3.0	9
33	A 3D cell culture approach for studying neuroinflammation. Journal of Neuroscience Methods, 2021, 358, 109201.	2.5	8
34	Cerebral organoids as a new model for prion disease. PLoS Pathogens, 2021, 17, e1009747.	4.7	7
35	Organoids for modeling prion diseases. Cell and Tissue Research, 2023, 392, 97-111.	2.9	6
36	Blood vessel cell death during prion disease: Implications for disease management and infection control. Experimental Hematology, 2014, 42, 939-940.	0.4	5

CATHRYN L HAIGH

#	Article	IF	CITATIONS
37	Cavitation during the protein misfolding cyclic amplification (PMCA) method – The trigger for de novo prion generation?. Biochemical and Biophysical Research Communications, 2015, 461, 494-500.	2.1	4
38	Cellular Analysis of Adult Neural Stem Cells for Investigating Prion Biology. Methods in Molecular Biology, 2017, 1658, 133-145.	0.9	3
39	Investigation of PrPC Metabolism and Function in Live Cells. Methods in Molecular Biology, 2008, 459, 21-34.	0.9	3
40	Doubling-down on prion protein function in Alzheimer's disease. Science Translational Medicine, 2019, 11, .	12.4	2
41	Development of a neuroprotective antioxidant by a mix-and-match strategy. Oxidants and Antioxidants in Medical Science, 2013, 2, 255.	0.2	2
42	Regulation of prion protein expression: a potential site for therapeutic intervention in the transmissible spongiform encephalopathies. International Journal of Biomedical Science, 2006, 2, 315-23.	0.1	2
43	The lymphatic route of TAU. Science Translational Medicine, 2019, 11, .	12.4	1
44	Reduced SOD2 expression does not influence prion disease course or pathology in mice. PLoS ONE, 2021, 16, e0259597.	2.5	1
45	In Vivo-Near Infrared Imaging of Neurodegeneration. Methods in Molecular Biology, 2017, 1658, 253-262.	0.9	0
46	Electrophysiological Investigations of Prion Protein Roles in Health and Disease. , 0, , .		0
47	A QuIC possibility for the diagnosis of Parkinson's disease. Science Translational Medicine, 2018, 10, .	12.4	0
48	Mind the gap: Cx32 and $\hat{l}\pm$ -synuclein. Science Translational Medicine, 2019, 11, .	12.4	0
49	Nosing around $\hat{1}$ ±-synuclein. Science Translational Medicine, 2019, 11, .	12.4	0
50	Feeling the α-synuclein strain. Science Translational Medicine, 2019, 11, .	12.4	0
51	Antagonizing prions. Science Translational Medicine, 2019, 11, .	12.4	0