
Nikos Tagmatarchis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1240114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemistry of Carbon Nanotubes. Chemical Reviews, 2006, 106, 1105-1136.	23.0	3,905
2	Current Progress on the Chemical Modification of Carbon Nanotubes. Chemical Reviews, 2010, 110, 5366-5397.	23.0	1,186
3	Soluble Carbon Nanotubes. Chemistry - A European Journal, 2003, 9, 4000-4008.	1.7	558
4	Structure, Properties, Functionalization, and Applications of Carbon Nanohorns. Chemical Reviews, 2016, 116, 4850-4883.	23.0	345
5	Amino acid functionalisation of water soluble carbon nanotubes. Chemical Communications, 2002, , 3050-3051.	2.2	312
6	Functionalization of carbon nanotubes via 1,3-dipolar cycloadditions. Journal of Materials Chemistry, 2004, 14, 437.	6.7	275
7	Integrating Single-Wall Carbon Nanotubes into Donor-Acceptor Nanohybrids. Angewandte Chemie - International Edition, 2004, 43, 5526-5530.	7.2	244
8	Supramolecular-Enhanced Charge Transfer within Entangled Polyamide Chains as the Origin of the Universal Blue Fluorescence of Polymer Carbon Dots. Journal of the American Chemical Society, 2018, 140, 12862-12869.	6.6	242
9	Graphene oxide with covalently linked porphyrin antennae: Synthesis, characterization and photophysical properties. Journal of Materials Chemistry, 2011, 21, 109-117.	6.7	232
10	Novel Photoactive Single-Walled Carbon Nanotube-Porphyrin Polymer Wraps: Efficient and Long-Lived Intracomplex Charge Separation. Advanced Materials, 2005, 17, 871-875.	11.1	207
11	Single-Wall Carbon Nanotube–Ferrocene Nanohybrids: Observing Intramolecular Electron Transfer in Functionalized SWNTs. Angewandte Chemie - International Edition, 2003, 42, 4206-4209.	7.2	188
12	Functional Single-Wall Carbon Nanotube NanohybridsAssociating SWNTs with Water-Soluble Enzyme Model Systems. Journal of the American Chemical Society, 2005, 127, 9830-9838.	6.6	186
13	Exfoliation and Chemical Modification Using Microwave Irradiation Affording Highly Functionalized Graphene. ACS Nano, 2010, 4, 7499-7507.	7.3	150
14	Rational design on n-type organic materials for high performance organic photovoltaics. RSC Advances, 2013, 3, 7160.	1.7	138
15	Exfoliated semiconducting pure 2H-MoS ₂ and 2H-WS ₂ assisted by chlorosulfonic acid. Chemical Communications, 2015, 51, 12950-12953.	2.2	127
16	Carbon Nanotubes Decorated with Palladium Nanoparticles: Synthesis, Characterization, and Catalytic Activity. Journal of Physical Chemistry C, 2008, 112, 13463-13469.	1.5	124
17	Ultrasonication Induces Oxygenated Species and Defects onto Exfoliated Graphene. Journal of Physical Chemistry C, 2013, 117, 23272-23278.	1.5	117
18	Zinc Phthalocyanine–Graphene Hybrid Material for Energy Conversion: Synthesis, Characterization, Photophysics, and Photoelectrochemical Cell Preparation. Journal of Physical Chemistry C, 2012, 116, 20564-20573.	1.5	110

#	Article	IF	CITATIONS
19	Linear and Nonlinear Optical Properties of [60]Fullerene Derivatives. Journal of Physical Chemistry A, 2009, 113, 1159-1170.	1.1	102
20	Dispersable Carbon Nanotube/Gold Nanohybrids: Evidence for Strong Electronic Interactions. Small, 2005, 1, 527-530.	5.2	100
21	Donor–acceptor nanoensembles of soluble carbon nanotubes. Chemical Communications, 2004, , 2034.	2.2	94
22	Porphyrin counter anion in imidazolium-modified graphene-oxide. Carbon, 2010, 48, 854-860.	5.4	93
23	Covalent Functionalization of Carbon Nanohorns with Porphyrins: Nanohybrid Formation and Photoinduced Electron and Energy Transfer. Advanced Functional Materials, 2007, 17, 1705-1711.	7.8	92
24	Cone-End Functionalization of Carbon Nanohorns. Chemistry of Materials, 2006, 18, 3918-3920.	3.2	90
25	Functionalization of Carbon Nanohorns with Azomethine Ylides: Towards Solubility Enhancement and Electron-Transfer Processes. Small, 2006, 2, 490-494.	5.2	90
26	Functionalised single wall carbon nanotubes/polypyrrole composites for the preparation of amperometric glucose biosensors. Journal of Materials Chemistry, 2004, 14, 807-810.	6.7	89
27	Carbon Nanotubes: Materials for Medicinal Chemistry and Biotechnological Applications. Current Medicinal Chemistry, 2006, 13, 1789-1798.	1.2	88
28	Functionalization of MoS2 with 1,2-dithiolanes: toward donor-acceptor nanohybrids for energy conversion. Npj 2D Materials and Applications, 2017, 1, .	3.9	85
29	Fullerenes in Medicinal Chemistry and their Biological Applications. Mini-Reviews in Medicinal Chemistry, 2001, 1, 339-348.	1.1	79
30	Electronic Interplay on Illuminated Aqueous Carbon Nanohornâ^'Porphyrin Ensembles. Journal of Physical Chemistry B, 2006, 110, 20729-20732.	1.2	79
31	Aryl diazonium functionalization of carbon nanohorns. Carbon, 2008, 46, 604-610.	5.4	77
32	Graphene exfoliation in organic solvents and switching solubility in aqueous media with the aid of amphiphilic block copolymers. Journal of Materials Chemistry, 2012, 22, 21507.	6.7	77
33	Multiwalled carbon nanotubes in donor–acceptor nanohybrids—towards long-lived electron transfer products. Chemical Communications, 2005, , 2038-2040.	2.2	76
34	Molecular Functionalization of Twoâ€Dimensional MoS ₂ Nanosheets. Chemistry - A European Journal, 2018, 24, 18246-18257.	1.7	73
35	Sidewall functionalization of single-walled carbon nanotubes through electrophilic additionElectronic supplementary information (ESI) available: Fig. S1: TEM views of functionalized nanotubes 1. Fig. S2: 1H NMR spectrum of functionalized SWNTs 2 material. See http://www.rsc.org/suppdata/cc/b2/b204366a/. Chemical Communications. 2002 2010-2011.	2.2	72
36	Nitrogen implantation of suspended graphene flakes: Annealing effects and selectivity of sp2 nitrogen species. Carbon, 2014, 73, 371-381.	5.4	68

#	Article	IF	CITATIONS
37	Separation, isolation and characterisation of two minor isomers of the [84]fullerene C84. Chemical Communications, 1999, , 1023-1024.	2.2	65
38	Versatile Organic (Fullerene)â^'Inorganic (CdTe Nanoparticle) Nanoensembles. Journal of the American Chemical Society, 2004, 126, 14340-14341.	6.6	65
39	Mono-, Di- and Trierbium Endohedral Metallofullerenes:Â Production, Separation, Isolation, and Spectroscopic Study. Chemistry of Materials, 2001, 13, 2374-2379.	3.2	61
40	Recent advancements in metal-based hybrid electrocatalysts supported on graphene and related 2D materials for the oxygen reduction reaction. Carbon, 2017, 118, 493-510.	5.4	61
41	Functionalized graphene and targeted applications – Highlighting the road from chemistry to applications. Progress in Materials Science, 2020, 114, 100683.	16.0	61
42	Nanosized inorganic/organic composites for solar energy conversion. Journal of Materials Chemistry, 2005, 15, 114.	6.7	60
43	Production, Separation, Isolation, and Spectroscopic Study of Dysprosium Endohedral Metallofullerenes. Chemistry of Materials, 2000, 12, 3222-3226.	3.2	58
44	Properties, applications and functionalisation of carbon nanohorns. International Journal of Nanotechnology, 2009, 6, 176.	0.1	56
45	Carbon nanotubes on HPLC silica microspheres. Carbon, 2006, 44, 1609-1613.	5.4	55
46	Electronic Communication between two [10]cycloparaphenylenes and Bis(azafullerene) (C ₅₉ N) ₂ Induced by Cooperative Complexation. Angewandte Chemie - International Edition, 2018, 57, 6930-6934.	7.2	55
47	(Terpyridine)copper(II)â^'Carbon Nanohorns:  Metallo-nanocomplexes for Photoinduced Charge Separation. Journal of the American Chemical Society, 2008, 130, 4725-4731.	6.6	53
48	Characterization and Photoelectrochemical Properties of Nanostructured Thin Film Composed of Carbon Nanohorns Covalently Functionalized with Porphyrins. Journal of Physical Chemistry C, 2008, 112, 15735-15741.	1.5	52
49	Carbon Nanohorn–Porphyrin Dimer Hybrid Material for Enhancing Light-Energy Conversion. Journal of Physical Chemistry C, 2012, 116, 9439-9449.	1.5	52
50	Excitedâ€ S tate Charge Transfer in Covalently Functionalized MoS ₂ with a Zinc Phthalocyanine Donor–Acceptor Hybrid. Angewandte Chemie - International Edition, 2019, 58, 5712-5717.	7.2	52
51	Photoinduced Electron Transfer on Aqueous Carbon Nanohorn–Pyrene–Tetrathiafulvalene Architectures. Chemistry - A European Journal, 2007, 13, 7600-7607.	1.7	51
52	Aqueous carbon nanohorn–pyrene–porphyrin nanoensembles: Controlling charge-transfer interactions. Diamond and Related Materials, 2007, 16, 1150-1153.	1.8	50
53	Tuning the reorganization energy of electron transfer in supramolecular ensembles – metalloporphyrin, oligophenylenevinylenes, and fullerene – and the impact on electron transfer kinetics. Nanoscale, 2015, 7, 2597-2608.	2.8	50
54	Azafullerenes Encapsulated within Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2008, 130, 6062-6063.	6.6	47

#	Article	IF	CITATIONS
55	Synthesis and biological properties of fullerene-containing amino acids and peptides. Mini-Reviews in Medicinal Chemistry, 2004, 4, 805-14.	1.1	46
56	Interfacing Transition Metal Dichalcogenides with Carbon Nanodots for Managing Photoinduced Energy and Charge-Transfer Processes. Journal of the American Chemical Society, 2018, 140, 13488-13496.	6.6	45
57	Production and EPR characterization of exohedrally perfluoroalkylated paramagnetic lanthanum metallofullerenes: (La@C82)–(C8F17)2. Chemical Physics Letters, 2002, 355, 226-232.	1.2	44
58	Solvent-free microwave-assisted Bingel reaction in carbon nanohorns. Journal of Materials Chemistry, 2009, 19, 7326.	6.7	44
59	Stability Improvement and Performance Reproducibility Enhancement of Perovskite Solar Cells Following (FA/MA/Cs)PbI _{3–<i>x</i>} Br _{<i>x</i>} /(CH ₃) ₃ SPbI _{3Dimensionality Engineering, ACS Applied Energy Materials, 2020, 3, 2465-2477.}	u ^{2:5}	44
60	Local magnetism in rare-earth metals encapsulated in fullerenes. Physical Review B, 2004, 69, .	1.1	43
61	Linear and nonlinear optical properties of triphenylamine-functionalized C60: insights from theory and experiment. Physical Chemistry Chemical Physics, 2010, 12, 373-381.	1.3	42
62	Donor–acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions. Beilstein Journal of Nanotechnology, 2014, 5, 1580-1589.	1.5	42
63	Enhancing efficiency and decreasing photocatalytic degradation of perovskite solar cells using a hydrophobic copper-modified titania electron transport layer. Applied Catalysis B: Environmental, 2021, 284, 119714.	10.8	42
64	Chemical Functionalization of Exfoliated Graphene. Chemistry - A European Journal, 2013, 19, 12930-12936.	1.7	41
65	A Long‣ived Azafullerenyl Radical Stabilized by Supramolecular Shielding with a [10]Cycloparaphenylene. Angewandte Chemie - International Edition, 2019, 58, 17745-17750.	7.2	41
66	Template synthesis of defect-rich MoS ₂ -based assemblies as electrocatalytic platforms for hydrogen evolution reaction. Chemical Communications, 2019, 55, 2078-2081.	2.2	41
67	Carbon-based materials: From fullerene nanostructures to functionalized carbon nanotubes. Pure and Applied Chemistry, 2005, 77, 1675-1684.	0.9	39
68	Photoinduced electron transfer in aqueous carbon nanotube/block copolymer/CdS hybrids: application in the construction of photoelectrochemical cells. Journal of Materials Chemistry, 2009, 19, 8990.	6.7	38
69	Transitionâ€Metal Chalcogenide/Graphene Ensembles for Lightâ€Induced Energy Applications. Chemistry - A European Journal, 2017, 23, 12967-12979.	1.7	38
70	Tuning spectral properties of fullerenes by substitutional doping. Physical Review B, 2004, 69, .	1.1	37
71	Sulfur-doped graphene/transition metal dichalcogenide heterostructured hybrids with electrocatalytic activity toward the hydrogen evolution reaction. Nanoscale Advances, 2019, 1, 1489-1496.	2.2	36
72	ESR Signal in Azafullerene (C59N)2 Induced by Thermal Homolysis. Journal of Physical Chemistry A, 1999, 103, 6969-6971.	1.1	35

#	Article	IF	CITATIONS
73	Fullerenes in Medicinal Chemistry and their Biological Applications. Mini-Reviews in Medicinal Chemistry, 2001, 1, 339-348.	1.1	35
74	Anion recognition by functionalized single wall carbon nanotubes. Chemical Communications, 2003, , 2576-2577.	2.2	35
75	Separation and purification of functionalised water-soluble multi-walled carbon nanotubes by flow field-flow fractionation. Carbon, 2005, 43, 1984-1989.	5.4	35
76	Photoinduced electron-transfer processes of carbon nanohorns with covalently linked pyrene chromophores: charge-separation and electron-migration systems. Journal of Materials Chemistry, 2007, 17, 2540.	6.7	35
77	Fluorene–Perylene Diimide Arrays onto Graphene Sheets for Photocatalysis. ACS Applied Materials & Interfaces, 2016, 8, 21576-21584.	4.0	34
78	Considerations for spectroscopy of liquid-exfoliated 2D materials: emerging photoluminescence of N-methyl-2-pyrrolidone. Scientific Reports, 2017, 7, 16706.	1.6	33
79	Electronic Interactions in Illuminated Carbon Dot/MoS ₂ Ensembles and Electrocatalytic Activity towards Hydrogen Evolution. Chemistry - A European Journal, 2018, 24, 10468-10474.	1.7	33
80	Aqueous Carbon-Nanotube–Amphiphilic-Block-Copolymer Nanoensembles: Towards Realization of Charge-Transfer Processes with Semiconductor Quantum Dots. Small, 2007, 3, 404-407.	5.2	32
81	Electrostatic Association of Ammonium-Functionalized Layered-Transition-Metal Dichalcogenides with an Anionic Porphyrin. ACS Applied Materials & amp; Interfaces, 2018, 10, 23476-23480.	4.0	32
82	Novel Synthesis and Characterization of Five Isomers of (C70)2 Fullerene Dimers. Journal of the American Chemical Society, 2002, 124, 178-179.	6.6	31
83	Soluble carbon nanotube ensembles for light-induced electron transfer interactions. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 29, 546-550.	1.3	31
84	Pingâ€₽ong Energy Transfer in Covalently Linked Porphyrinâ€MoS ₂ Architectures. Angewandte Chemie - International Edition, 2020, 59, 3976-3981.	7.2	31
85	Theoretical Study of Fulleropyrrolidines by Density Functional and Time-Dependent Density Functional Theory. Journal of Physical Chemistry C, 2007, 111, 14139-14149.	1.5	30
86	Grafting-to approach for the functionalization of carbon nanotubes with polystyrene. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 152, 40-43.	1.7	30
87	A corrole–azafullerene dyad: synthesis, characterization, electronic interactions and photoinduced charge separation. Chemical Communications, 2013, 49, 9128.	2.2	30
88	Does a nitrogen matter? Synthesis and photoinduced electron transfer of perylenediimide donors covalently linked to C ₅₉ N and C ₆₀ acceptors. Nanoscale, 2015, 7, 7437-7444.	2.8	30
89	Synthesis and Solution Behavior of Carbon Nanotubes Decorated with Amphiphilic Block Polyelectrolytesâ€. Journal of Physical Chemistry B, 2007, 111, 8369-8372.	1.2	29
90	Axially Assembled Photosynthetic Antenna-Reaction Center Mimics Composed of Boron Dipyrromethenes, Aluminum Porphyrin, and Fullerene Derivatives. Inorganic Chemistry, 2017, 56, 10268-10280.	1.9	29

#	Article	IF	CITATIONS
91			

#	Article	IF	CITATIONS
109	Covalently Functionalized MoS ₂ with Dithiolenes. , 2020, 2, 832-837.		23
110	Photooxidation of Olefins Sensitized by Bisazafullerene (C59N)2and Hydroazafullerene C59HN:Â Product Analysis, Emission of Singlet Oxygen, and Transient Absorption Spectroscopy. Journal of Organic Chemistry, 2001, 66, 8026-8029.	1.7	22
111	Soluble Functionalized Carbon Nanohorns. Journal of Nanoscience and Nanotechnology, 2007, 7, 3468-3472.	0.9	22
112	Grafting Living Polymers onto Carbon Nanohorns. Chemistry - A European Journal, 2007, 13, 7595-7599.	1.7	22
113	Host–guest interactions in azafullerene (C59N)-single-wall carbon nanotube (SWCNT) peapod hybrid structures. Chemical Communications, 2010, 46, 1293.	2.2	22
114	Imidazolium modified carbon nanohorns: switchable solubility and stabilization of metal nanoparticles. Journal of Materials Chemistry, 2010, 20, 2959.	6.7	22
115	Microwave-assisted functionalization of carbon nanohornsvia [2+1] nitrenes cycloaddition. Chemical Communications, 2011, 47, 1604-1606.	2.2	22
116	Carbon Nanohorn-Based Electrocatalysts for Energy Conversion. Nanomaterials, 2020, 10, 1407.	1.9	22
117	Interfacing Carbon Dots for Chargeâ€Transfer Processes. Small, 2021, 17, e2006005.	5.2	22
118	Organic Chemistry with Heterofullerenes:  Photosensitized Oxygenation of Alkenes. Organic Letters, 2000, 2, 3551-3554.	2.4	21
119	Element-Specific Probe of the Magnetic and Electronic Properties of Dyincar-Fullerenes. Journal of Physical Chemistry B, 2006, 110, 7289-7295.	1.2	21
120	Theoretical study in donor–acceptor carbon nanohorn-based hybrids. Chemical Physics Letters, 2007, 448, 115-120.	1.2	21
121	Azafullerene C ₅₉ N–Phthalocyanine Dyad: Synthesis, Characterisation and Photoinduced Electron Transfer. ChemPhysChem, 2012, 13, 1246-1254.	1.0	21
122	Boosting perovskite nanomorphology and charge transport properties <i>via</i> a functional D–Ĩ€-A organic layer at the absorber/hole transporter interface. Nanoscale, 2020, 12, 15137-15149.	2.8	21
123	Controlled Chemical Functionalization toward 3Dâ€2D Carbon Nanohornâ€MoS ₂ Heterostructures with Enhanced Electrocatalytic Activity for Protons Reduction. Advanced Functional Materials, 2021, 31, 2105287.	7.8	21
124	Microwave-assisted Functionalization of Carbon Nanostructured Materials. Current Organic Chemistry, 2011, 15, 1121-1132.	0.9	20
125	Nitrogen-Doped Silver-Nanoparticle-Decorated Transition-Metal Dichalcogenides as Surface-Enhanced Raman Scattering Substrates for Sensing Polycyclic Aromatic Hydrocarbons. ACS Applied Nano Materials, 2018, 1, 3625-3635.	2.4	20
126	Adsorption of fullerene and azafullerene on Cu(1 1 1) studied by electron energy loss spectroscopy. Surface Science, 2001, 482-485, 1-8.	0.8	19

Nikos Tagmatarchis

#	Article	IF	CITATIONS
127	Production, isolation and structural characterization of [92]fullerene isomers. Chemical Communications, 2002, , 2992-2993.	2.2	19
128	Regioselective triphenylamine-tether-directed synthesis of [60]fullerene bis-adducts. Tetrahedron Letters, 2009, 50, 398-401.	0.7	19
129	Photocatalytic application of nanosized CdS immobilized onto functionalized MWCNTs. Dalton Transactions, 2014, 43, 7429.	1.6	19
130	Functionalized multi-walled carbon nanotubes in an aldol reaction. Nanoscale, 2015, 7, 2750-2757.	2.8	19
131	Spectromicroscopy of C60 and azafullerene C59N: Identifying surface adsorbed water. Scientific Reports, 2016, 6, 35605.	1.6	19
132	Excitedâ€State Charge Transfer in Covalently Functionalized MoS ₂ with a Zinc Phthalocyanine Donor–Acceptor Hybrid. Angewandte Chemie, 2019, 131, 5768-5773.	1.6	19
133	Supramolecular organized structures of fullerene-based materials and organic functionalization of carbon nanotubes. Comptes Rendus Chimie, 2003, 6, 597-602.	0.2	18
134	Raman scattering from nanomaterials encapsulated into single wall carbon nanotubes. Journal of Raman Spectroscopy, 2007, 38, 704-713.	1.2	18
135	Reductive dismantling and functionalization of carbon nanohorns. Chemical Communications, 2015, 51, 5017-5019.	2.2	18
136	Case Study for Artificial Photosynthesis: Noncovalent Interactions between C ₆₀ -Dipyridyl and Zinc Porphyrin Dimer. Journal of Physical Chemistry C, 2017, 121, 4850-4858.	1.5	18
137	Dual-Mode X-Band EPR Study of Two Isomers of the Endohedral Metallofullerene Er@C82. Journal of the American Chemical Society, 2001, 123, 9924-9925.	6.6	17
138	Benzyne cycloaddition onto carbon nanohorns. Nanoscale, 2013, 5, 6388.	2.8	17
139	Photoinduced Chargeâ€Transfer Interactions on a Graphene/Block Copolymer Electrostatically Bound to Tetracationic Porphyrin in Aqueous Media. Chemistry - A European Journal, 2013, 19, 9286-9290.	1.7	17
140	A New Approach for the Photosynthetic Antenna–Reaction Center Complex with a Model Organized Around an <i>s</i> â€Triazine Linker. Chemistry - A European Journal, 2014, 20, 2049-2057.	1.7	17
141	Fullerene–proline hybrids: Synthesis, characterization and organocatalytic properties in aldol reactions. Materials Letters, 2014, 137, 343-346.	1.3	17
142	Multichromophores Onto Graphene: Supramolecular Non-Covalent Approaches for Efficient Light Harvesting. Journal of Physical Chemistry C, 2015, 119, 8046-8053.	1.5	17
143	Individualized pâ€Ðoped Carbon Nanohorns. Angewandte Chemie - International Edition, 2016, 55, 10468-10472.	7.2	17
144	Aryl-derivatized, water-soluble functionalized carbon nanotubes for biomedical applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 152, 8-11.	1.7	16

#	Article	IF	CITATIONS
145	Fullerene–Coumarin Dyad as a Selective Metal Receptor: Synthesis, Photophysical Properties, Electrochemistry and Ion Binding Studies. Chemistry - A European Journal, 2010, 16, 11969-11976.	1.7	16
146	Molecular recognition of La@C82 endohedral metallofullerene by an isophthaloyl-bridged porphyrin dimer. Tetrahedron Letters, 2010, 51, 5896-5899.	0.7	16
147	Microwave assisted covalent functionalization of C60@SWCNT peapods. Chemical Communications, 2010, 46, 9110.	2.2	16
148	Unveiling the Photoinduced Electronâ€Donating Character of MoS ₂ in Covalently Linked Hybrids Featuring Perylenediimide. Angewandte Chemie - International Edition, 2021, 60, 9120-9126.	7.2	16
149	Azafullerene (C59N)2 thin-film field-effect transistors. Applied Physics Letters, 2004, 84, 2154-2156.	1.5	15
150	Peptidomimetic–functionalized carbon nanotubes with antitrypsin activity. Carbon, 2009, 47, 3550-3558.	5.4	15
151	Polymer Covalent Functionalization of Carbon Nanohorns Using Bulk Free Radical Polymerization. Chemistry - A European Journal, 2010, 16, 5927-5933.	1.7	15
152	Isolation and characterization of [5,6]-pyrrolidino-Sc ₃ N@I _h -C ₈₀ diastereomers. Chemical Communications, 2014, 50, 12552-12555.	2.2	15
153	Conjugating proline derivatives onto multi-walled carbon nanotubes: Preparation, characterization and catalytic activity in water. Materials Letters, 2015, 157, 212-214.	1.3	15
154	All-Carbon Nanosized Hybrid Materials: Fluorescent Carbon Dots Conjugated to Multiwalled Carbon Nanotubes. Journal of Physical Chemistry C, 2016, 120, 8550-8558.	1.5	15
155	Axially Substituted Silicon Phthalocyanine as Electron Donor in a Dyad and Triad with Azafullerene as Electron Acceptor for Photoinduced Charge Separation. Chemistry - A European Journal, 2016, 22, 15137-15143.	1.7	15
156	Resonant processes and Coulomb interactions in (C59N)2. Journal of Chemical Physics, 2007, 126, 184707.	1.2	14
157	Voltammetric quantum charging capacitance behaviour of functionalised carbon nanotubes in solution. Electrochimica Acta, 2008, 53, 4059-4064.	2.6	14
158	Functionalized MoS2 supported core-shell Ag@Au nanoclusters for managing electronic processes in photocatalysis. Materials Research Bulletin, 2019, 114, 112-120.	2.7	14
159	Chemical Functionalization of 2D Materials. Chemistry - A European Journal, 2020, 26, 6292-6295.	1.7	14
160	An ion-selective crown ether covalently grafted onto chemically exfoliated MoS ₂ as a biological fluid sensor. Nanoscale, 2021, 13, 8948-8957.	2.8	14
161	Decoration of Carbon Nanohorns with Palladium and Platinum Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 6047-6054.	0.9	13
162	New hybrid materials with porphyrin-ferrocene and porphyrin-pyrene covalently linked to single-walled carbon nanotubes. RSC Advances, 2013, 3, 5539.	1.7	13

#	Article	IF	CITATIONS
163	Covalently functionalized layered MoS ₂ supported Pd nanoparticles as highly active oxygen reduction electrocatalysts. Nanoscale, 2020, 12, 18278-18288.	2.8	13
164	Pyrene Coating Transition Metal Disulfides as Protection from Photooxidation and Environmental Aging. Nanomaterials, 2020, 10, 363.	1.9	13
165	Robust coherent spin centers from stable azafullerene radicals entrapped in cycloparaphenylene rings. Nanoscale, 2021, 13, 19946-19955.	2.8	13
166	N-(Iodopropenyl)-octahydrobenzo[f]- and -[g]quinolines:  Synthesis and Adrenergic and Dopaminergic Activity Studies. Journal of Medicinal Chemistry, 1998, 41, 4165-4170.	2.9	12
167	Electronic absorption and vibrational spectroscopy of azafullerene C59HN and its oxide C59HNO. Perkin Transactions II RSC, 2000, , 2361-2362.	1.1	12
168	Thermal Stability and High Temperature Graphitization of Bisazafullerene (C59N)2As Studied by IR and Raman Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 11964-11969.	1.2	12
169	Core–Shell Pd@M (M=Ni, Cu, Co) Nanoparticles/Graphene Ensembles with High Mass Electrocatalytic Activity Toward the Oxygen Reduction Reaction. Chemistry - A European Journal, 2019, 25, 11105-11113.	1.7	12
170	(Photo)electrocatalysis of molecular oxygen reduction by S-doped graphene decorated with a star-shaped oligothiophene. Nanoscale, 2019, 11, 7335-7346.	2.8	12
171	Preparation, Photophysical and Electrochemical Evaluation of an Azaborondipyrromethene/Zinc Porphyrin/Graphene Supramolecular Nanoensemble. Chemistry - A European Journal, 2020, 26, 6652-6661.	1.7	12
172	Bottomâ€Up Synthesized MoS 2 Interfacing Polymer Carbon Nanodots with Electrocatalytic Activity for Hydrogen Evolution. Chemistry - A European Journal, 2020, 26, 6635-6642.	1.7	12
173	Synthesis, characterization, and photophysical properties of a carbon nanohorn–coumarin hybrid material. Chemical Physics Letters, 2011, 516, 76-81.	1.2	11
174	Direct evidence for covalent functionalization of carbon nanohorns by high-resolution electron microscopy imaging of C60 conjugated onto their skeleton. Carbon, 2012, 50, 3909-3914.	5.4	11
175	Oligothiophene/graphene supramolecular ensembles managing light induced processes: preparation, characterization, and femtosecond transient absorption studies leading to charge-separation. Nanoscale, 2015, 7, 15840-15851.	2.8	11
176	[3 + 2] cycloaddition reaction of azomethine ylides generated by thermal ring opening of aziridines onto carbon nanohorns. RSC Advances, 2016, 6, 44782-44787.	1.7	11
177	Carbon nanohorn/liposome systems: Preformulation, design and in vitro toxicity studies. Materials Science and Engineering C, 2019, 105, 110114.	3.8	11
178	Integrating Water-Soluble Polythiophene with Transition-Metal Dichalcogenides for Managing Photoinduced Processes. ACS Applied Materials & Interfaces, 2019, 11, 5947-5956.	4.0	11
179	A Longâ€Lived Azafullerenyl Radical Stabilized by Supramolecular Shielding with a [10]Cycloparaphenylene. Angewandte Chemie, 2019, 131, 17909-17914.	1.6	11
180	Singleâ€Step Functionalization and Exfoliation of Graphene with Polymers under Mild Conditions. Chemistry - A European Journal, 2015, 21, 18841-18846.	1.7	10

#	Article	IF	CITATIONS
181	Hybrids of Metal Nanoclusters and Grapheneâ€Based Materials: Preparation, Properties and Applications. ChemNanoMat, 2016, 2, 1065-1072.	1.5	10
182	Carbon quantum dots/block copolymer ensembles for metal-ion sensing and bioimaging. Journal of Materials Chemistry B, 2017, 5, 5397-5402.	2.9	10
183	Interfacing tetrapyridyl-C ₆₀ with porphyrin dimers <i>via</i> π-conjugated bridges: artificial photosynthetic systems with ultrafast charge separation. Physical Chemistry Chemical Physics, 2018, 20, 21269-21279.	1.3	10
184	Novel singlet oxygen generators: the nature and the number of trapped metal atoms in endohedral metallofullerenes M@C82 (M=Dy, Gd, La) and Dy2@C2n (2n=84–94). Physical Chemistry Chemical Physics, 2001, 3, 3200-3202.	1.3	9
185	Catalytic activity of surfactantsolubilized multiwalled carbon nanotubes decorated with palladium nanoparticles. Diamond and Related Materials, 2008, 17, 1582-1585.	1.8	9
186	Vibrational and electronic excitations of (C59N)2. Solid State Communications, 2001, 117, 697-701.	0.9	8
187	Stability, thermal homolysis and intermediate phases of solid hydroazafullerene C59HN. Chemical Communications, 2007, , 3386.	2.2	8
188	NEXAFS spectromicroscopy of suspended carbon nanohorns. Chemical Physics Letters, 2013, 587, 85-87.	1.2	8
189	Photoinduced charge separation in an oligophenylenevinylene-based Hamilton-type receptor supramolecularly associating two C ₆₀ -barbiturate guests. Physical Chemistry Chemical Physics, 2016, 18, 811-817.	1.3	8
190	Self-Assembled Core–Shell CdTe/Poly(3-hexylthiophene) Nanoensembles as Novel Donor–Acceptor Light-Harvesting Systems. ACS Applied Materials & Interfaces, 2017, 9, 44695-44703.	4.0	8
191	Ultralong 20 Milliseconds Charge Separation Lifetime for Photoilluminated Oligophenylenevinylene–Azafullerene Systems. Advanced Functional Materials, 2018, 28, 1702278.	7.8	8
192	Azafullerene-based donor-acceptor dyads. Arkivoc, 2015, 2015, 124-139.	0.3	8
193	Oscillations in the valence-band photoemission spectrum of the heterofullereneC59N:A photoelectron interference phenomenon. Physical Review B, 1999, 59, 9834-9837.	1.1	7
194	Final-state interference effects in valence band photoemission of(C59N)2. Physical Review B, 2002, 66, .	1.1	7
195	Multipole induced splitting of metal-cage vibrations in crystalline endohedral D2d-M2@C84 dimetallofullerenes. Journal of Chemical Physics, 2004, 120, 1873-1880.	1.2	7
196	Functionalization of Carbon Nanohorns with Polyethylene Oxide: Synthesis and Incorporation in a Polymer Matrix. Journal of Nanoscience and Nanotechnology, 2009, 9, 3775-3779.	0.9	7
197	Pingpongâ€Energietransfer in kovalent verknüpften Porphyrinâ€MoS 2 â€Architekturen. Angewandte Chemie, 2020, 132, 4004-4009.	1.6	7
198	Laser-Deposited Carbon Aerogel Derived from Graphene Oxide Enables NO ₂ -Selective Parts-per-Billion Sensing. ACS Applied Materials & Interfaces, 2020, 12, 39541-39548.	4.0	7

#	Article	IF	CITATIONS
199	Sulfur-Doped Carbon Nanohorn Bifunctional Electrocatalyst for Water Splitting. Nanomaterials, 2020, 10, 2416.	1.9	7
200	Outer-Surface Covalent Functionalization of Carbon Nanohorn Spherical Aggregates Assessed by Highly Spatial-Resolved Energy-Dispersive X-ray Spectrometry in Scanning Electron Microscopy. Journal of Physical Chemistry C, 2020, 124, 25142-25147.	1.5	7
201	β-Alkoxy-substituted phenethylamines: a family of compounds potentially active at the dopamine and α-adrenergic receptors. European Journal of Medicinal Chemistry, 1995, 30, 949-954.	2.6	6
202	Exfoliation and supramolecular functionalization of graphene with an electron donor perylenediimide derivative. Photochemical and Photobiological Sciences, 2017, 16, 596-605.	1.6	6
203	Non-covalent Graphene/Polymer Functional Materials. Current Organic Chemistry, 2015, 19, 1800-1818.	0.9	6
204	Synthetic studies to the octahydrobenzo[<i>f</i>]quinoline system. Journal of Heterocyclic Chemistry, 1996, 33, 983-985.	1.4	5
205	Chemisorption of azafullerene on silicon: isolating C59N monomers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 74, 202-205.	1.7	5
206	cis- and trans-N-Benzyl-octahydrobenzo[g]quinolines. Adrenergic and Dopaminergic Activity Studies. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 883-886.	1.0	5
207	Fullerenes and Their Derivatives. , 2006, , .		5
208	Ultrafast third-order nonlinear optical response of C84, C84–D2 (IV) and C84–D2d (II). Chemical Physics Letters, 2006, 425, 110-113.	1.2	5
209	Fullerene derivatives encapsulated in carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4074-4077.	0.7	5
210	Chemically modified carbon nanostructures and 2D nanomaterials for fabrics performing under operational tension and extreme environmental conditions. Materials Horizons, 2021, 8, 3187-3200.	6.4	5
211	Theoretical study on triphenylamine-based sensors of dicarboxylic acids. Computational and Theoretical Chemistry, 2007, 807, 11-16.	1.5	4
212	Origin of the n-type transport behavior of azafullerene encapsulated single-walled carbon nanotubes. Applied Physics Letters, 2011, 99, 053105.	1.5	4
213	Photocatalytic applications with CdS • block copolymer/exfoliated graphene nanoensembles: hydrogen generation and degradation of Rhodamine B. Nanotechnology, 2014, 25, 445404.	1.3	4
214	Organic–Inorganic Azafullereneâ€Gold C ₅₉ Nâ€Au Nanohybrid: Synthesis, Characterization, and Properties. Chemistry - A European Journal, 2014, 20, 14729-14735.	1.7	4
215	Bottom-up microwave-assisted preparation of poly(methacrylic acid)-MoS2 hybrid material. Chemical Physics Letters, 2019, 716, 1-5.	1.2	4
216	In‣itu Growth and Immobilization of CdS Nanoparticles onto Functionalized MoS ₂ : Preparation, Characterization and Fabrication of Photoelectrochemical Cells. Chemistry - an Asian Journal, 2020, 15, 2350-2356.	1.7	4

#	Article	IF	CITATIONS
217	Methylammonium Lead Bromide Perovskite Nano-Crystals Grown in a Poly[styrene-co-(2-(dimethylamino)ethyl Methacrylate)] Matrix Immobilized on Exfoliated Graphene Nano-Sheets. Nanomaterials, 2022, 12, 1275.	1.9	4
218	Phases for the azafulleridesRbxC59N. Physical Review B, 2001, 63, .	1.1	3
219	C 1s photoemission and shake-up features of (C ₅₉ N) ₂ . Journal of Physics: Conference Series, 2008, 100, 072024.	0.3	3
220	Pyrene-functionalized tungsten disulfide as stable resistive photosensor. Materials Advances, 2020, 1, 2459-2466.	2.6	3
221	Functionalized Carbon Nanohorns as Drug Delivery Platforms. Methods in Molecular Biology, 2021, 2207, 13-24.	0.4	3
222	One-step covalent hydrophobic/hydrophilic functionalization of chemically exfoliated molybdenum disulfide nanosheets with RAFT derived polymers. Chemical Communications, 2022, 58, 795-798.	2.2	3
223	Electrocatalytic activity for proton reduction by a covalent non-metal graphene–fullerene hybrid. Chemical Communications, 0, , .	2.2	3
224	Infra-red and Raman spectroscopic study on the thermal stability and high temperature transformation of hydroazafullerene C59HN. Carbon, 2006, 44, 1420-1424.	5.4	2
225	Chemically Induced, Thermally Controlled Peelâ€Off of the External Walls of Doubleâ€Walled Carbon Nanotubes. Small, 2010, 6, 2826-2831.	5.2	2
226	Photoemission study of the electronic structure of azafullerene encapsulated single-walled carbon nanotubes. Chemical Physics Letters, 2013, 570, 100-103.	1.2	2
227	Supramolecular Association of Oligophenylenevinylene-based Hamilton Receptor and Fullerene-based Cyanurate via Multiple Hydrogen Bonding. Fullerenes Nanotubes and Carbon Nanostructures, 2014, 22, 88-98.	1.0	2
228	Individualized pâ€Doped Carbon Nanohorns. Angewandte Chemie, 2016, 128, 10624-10628.	1.6	2
229	Tetherâ€Directed Regioselective Synthesis of an Equatorial face Bisadduct of Azafullerene Using Cyclo â€[2]â€octylmalonate. Chemistry - A European Journal, 2019, 25, 5751-5756.	1.7	2
230	New cationic heptamethinecyanine-graphene hybrid materials. Dyes and Pigments, 2020, 175, 108047.	2.0	2
231	Synthesis and EPR Characterization of Exohedrally Perfluoroalkylated Paramagnetic Lanthanum Metallofullerenes: A Fluorous Phase Approach. AlP Conference Proceedings, 2002, , .	0.3	1
232	Soluble Carbon Nanotubes. ChemInform, 2003, 34, no.	0.1	1
233	Carbon nanotubes: Chemically Induced, Thermally Controlled Peel-Off of the External Walls of Double-Walled Carbon Nanotubes (Small 24/2010). Small, 2010, 6, 2774-2774.	5.2	1
234	Functionalization of Graphene. World Scientific Series on Carbon Nanoscience, 2012, , 1-54.	0.1	1

#	Article	IF	CITATIONS
235	Immobilized CdS Nanoparticles on Poly(amidoamine)-Functionalized MWCNTs. ECS Journal of Solid State Science and Technology, 2013, 2, M3023-M3027.	0.9	1
236	Non-covalent nanodiamond–polymer dispersions and electrostatic immobilization of bovine serum albumin protein. Materials Research Express, 2015, 2, 115005.	0.8	1
237	Emerging trends in one- and two-dimensional nanomaterials. Royal Society Open Science, 2020, 7, 201786.	1.1	1
238	Solution-phase molecular recognition of an azafullerene-quinoline dyad by a face-to-face porphyrin-dimer tweezer. RSC Advances, 2020, 10, 31720-31729.	1.7	1
239	Unveiling the Photoinduced Electronâ€Đonating Character of MoS 2 in Covalently Linked Hybrids Featuring Perylenediimide. Angewandte Chemie, 2021, 133, 9202-9208.	1.6	1
240	First Synthesis of the Inherently Chiral <i>Trans</i> â€4′ Bisadduct of C ₅₉ N Azafullerene by Using <i>Cycloâ€</i> [2]â€dodecylmalonate as a Tether. Chemistry - A European Journal, 2021, 27, 13879-13886.	1.7	1
241	Gas Sensing Using Monolayer MoS2. NATO Science for Peace and Security Series A: Chemistry and Biology, 2019, , 71-95.	0.5	1
242	Fullerenes and Their Derivatives. Advanced Materials and Technologies, 2006, , 1-39.	0.4	1
243	A solution-processed MoS ₂ /graphene heterostructure mediated by a bifunctional block copolymer as a non-noble metal platform for hydrogen evolution. Sustainable Energy and Fuels, 2022, 6, 2858-2867.	2.5	1
244	Synthesis and characterization of organometallic compounds of fullerene derivatives. , 1999, , .		0
245	C59N on silicon surfaces: monomers, dimers and multilayers. , 1999, , .		0
246	Raman spectrum and stability of. , 1999, , .		0
247	HREELS investigations of adsorbed (C[sub 59]N)[sub 2]. AIP Conference Proceedings, 2000, , .	0.3	0
248	The phases of Rb[sub x]C[sub 59]N from Raman spectroscopy. AIP Conference Proceedings, 2000, , .	0.3	0
249	Investigations of thick films of C[sub 59]N doped with potassium. AIP Conference Proceedings, 2001, , .	0.3	0
250	Thermal stability of the heterofullerene (C[sub 59]N)X for X=C[sub 59]N,H AIP Conference Proceedings, 2001, , .	0.3	0
251	Hetero- and homo- [70] fullerene dimers: (C[sub 69]N)[sub 2] and (C[sub 70])[sub 2]. AIP Conference Proceedings, 2001, , .	0.3	0
252	Production, Isolation and Structural Characterization of [92]Fullerene Isomers ChemInform, 2003, 34, no.	0.1	0

#	Article	IF	CITATIONS
253	Cover Picture: Single-Wall Carbon Nanotube–Ferrocene Nanohybrids: Observing Intramolecular Electron Transfer in Functionalized SWNTs (Angew. Chem. Int. Ed. 35/2003). Angewandte Chemie - International Edition, 2003, 42, 4109-4109.	7.2	0
254	Supramolecular Organized Structures of Fullerene-Based Materials and Organic Functionalization of Carbon Nanotubes. ChemInform, 2004, 35, no.	0.1	0
255	Carbon nanotube nanocomposites: quasi 1-dimensional structures for electron transfer. , 2005, , .		0
256	Functionalized Water-Soluble Multi-Walled Carbon Nanotubes: Synthesis, Purification and Length Separation by Flow Field-Flow Fractionation. AIP Conference Proceedings, 2005, , .	0.3	0
257	Frontispiece: Transitionâ€Metal Chalcogenide/Graphene Ensembles for Lightâ€Induced Energy Applications. Chemistry - A European Journal, 2017, 23, .	1.7	0
258	In My Element : Carbon. Chemistry - A European Journal, 2019, 25, 1117-1117.	1.7	0
259	Frontispiece: Nobleâ€Metalâ€Free Doped Carbon Nanomaterial Electrocatalysts. Chemistry - A European Journal, 2020, 26, .	1.7	0
260	Graphene featuring imidazolium rings and electrostatically immobilized polyacrylate chains as metal-free electrocatalyst for selective oxygen reduction to hydrogen peroxide. Colloids and	2.3	0

Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129252.