Adam Fahy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1240083/publications.pdf

Version: 2024-02-01

567281 610901 34 596 15 24 citations h-index g-index papers 34 34 34 741 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Nano-pathways: Bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics. Nano Energy, 2016, 19, 495-510.	16.0	75
2	The short-term reduction of uranium by nanoscale zero-valent iron (nZVI): role of oxide shell, reduction mechanism and the formation of U(<scp>v</scp>)-carbonate phases. Environmental Science: Nano, 2017, 4, 1304-1313.	4.3	47
3	Reduced Uranium Phases Produced from Anaerobic Reaction with Nanoscale Zerovalent Iron. Environmental Science & Environmental	10.0	43
4	Unlocking new contrast in a scanning helium microscope. Nature Communications, 2016, 7, 10189.	12.8	43
5	Unravelling donor–acceptor film morphology formation for environmentally-friendly OPV ink formulations. Green Chemistry, 2019, 21, 5090-5103.	9.0	31
6	A highly contrasting scanning helium microscope. Review of Scientific Instruments, 2015, 86, 023704.	1.3	28
7	Environmentally friendly preparation of nanoparticles for organic photovoltaics. Organic Electronics, 2018, 59, 432-440.	2.6	28
8	A design for a pinhole scanning helium microscope. Nuclear Instruments & Methods in Physics Research B, 2014, 340, 76-80.	1.4	27
9	Engineering Two-Phase and Three-Phase Microstructures from Water-Based Dispersions of Nanoparticles for Eco-Friendly Polymer Solar Cell Applications. Chemistry of Materials, 2018, 30, 6521-6531.	6.7	25
10	Comparison of inorganic electron transport layers in fully roll-to-roll coated/printed organic photovoltaics in normal geometry. Journal of Materials Chemistry A, 2016, 4, 15986-15996.	10.3	23
11	Role of Stabilizing Surfactants on Capacitance, Charge, and Ion Transport in Organic Nanoparticle-Based Electronic Devices. ACS Applied Materials & Samp; Interfaces, 2019, 11, 10074-10088.	8.0	22
12	Magnetically separable mesoporous alginate polymer beads assist adequate removal of aqueous methylene blue over broad solution pH. Journal of Cleaner Production, 2021, 319, 128694.	9.3	20
13	Tunable solution-processable anodic exfoliated graphene. Applied Materials Today, 2019, 15, 290-296.	4.3	18
14	The role of surface energy control in organic photovoltaics based on solar paints. Journal of Materials Chemistry A, 2019, 7, 9202-9214.	10.3	16
15	Nanomorphology of eco-friendly colloidal inks, relating non-fullerene acceptor surface energy to structure formation. Materials Chemistry Frontiers, 2021, 5, 2218-2233.	5.9	15
16	Polymer Photodetectors for Printable, Flexible, and Fully Tissue Equivalent Xâ€Ray Detection with Zeroâ€Bias Operation and Ultrafast Temporal Responses. Advanced Materials Technologies, 2021, 6, 2001298.	5.8	15
17	A desktop supersonic free-jet beam source for a scanning helium microscope (SHeM). Measurement Science and Technology, 2012, 23, 105901.	2.6	13
18	Improved field emission stability from single-walled carbon nanotubes chemically attached to silicon. Nanoscale Research Letters, 2012, 7, 432.	5.7	11

#	Article	IF	CITATIONS
19	Image formation in the scanning helium microscope. Ultramicroscopy, 2018, 192, 7-13.	1.9	11
20	Field ionization detection of helium using a planar array of carbon nanotubes. Physical Review B, 2012 , 85 , .	3. 2	10
21	Manipulating the orientation of an organic adsorbate on silicon: a NEXAFS study of acetophenone on Si(0 0 1). Journal of Physics Condensed Matter, 2015, 27, 054002.	1.8	10
22	Taxonomy through the lens of neutral helium microscopy. Scientific Reports, 2019, 9, 2148.	3.3	10
23	Optimization, characterization and upscaling of aqueous solar nanoparticle inks for organic photovoltaics using low-cost donor:acceptor blend. Organic Electronics, 2018, 52, 71-78.	2.6	9
24	Field emission from single-, double-, and multi-walled carbon nanotubes chemically attached to silicon. Journal of Applied Physics, 2012, 111, 044326.	2.5	8
25	Development of a permanent magnet alternative for a solenoidal ion source. Nuclear Instruments & Methods in Physics Research B, 2014, 340, 85-89.	1.4	7
26	Fast neutral atom microscopy: An optimisation framework for stagnation detectors. Measurement: Journal of the International Measurement Confederation, 2020, 151, 107263.	5.0	7
27	Roll-to-roll solvent annealing of printed P3HT : IC _X A devices. RSC Advances, 2019, 9, 42294-42305.	3.6	5
28	Low-Temperature CVD-Grown Graphene Thin Films as Transparent Electrode for Organic Photovoltaics. Coatings, 2022, 12, 681.	2.6	5
29	Development of an improved field ionization detector incorporating a secondary electron stage. Measurement Science and Technology, 2011, 22, 115902.	2.6	4
30	Field ionization detectors: a comparative model. Measurement Science and Technology, 2011, 22, 015901.	2.6	3
31	Complex optical elements for scanning helium microscopy through 3D printing. Journal Physics D: Applied Physics, 2022, 55, 095305.	2.8	3
32	A simple counter-flow cooling system for a supersonic free-jet beam source assembly. Review of Scientific Instruments, 2016, 87, 053301.	1.3	2
33	Standardizing resolution definition in scanning helium microscopy. Ultramicroscopy, 2022, 233, 113453.	1.9	2
34	Temperature-Modulated Doping at Polymer Semiconductor Interfaces. ACS Applied Electronic Materials, 2021, 3, 1384-1393.	4.3	0