Sophia Alexandra Tsipas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1240040/publications.pdf

Version: 2024-02-01

		331259	360668
58	1,367	21	35
papers	citations	h-index	g-index
50	FO	FO	1207
59	59	59	1397
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Extrusion-based additive manufacturing of Ti3SiC2 and Cr2AlC MAX phases as candidates for high temperature heat exchangers. Journal of the European Ceramic Society, 2022, 42, 841-849.	2.8	8
2	Sinterability, Mechanical Properties and Wear Behavior of Ti3SiC2 and Cr2AlC MAX Phases. Ceramics, 2022, 5, 55-74.	1.0	5
3	Improvement of wear resistance of low-cost powder metallurgy \hat{l}^2 -titanium alloys for biomedical applications. Surface and Coatings Technology, 2022, 434, 128207.	2.2	19
4	Strategies to Control In Vitro Degradation of Mg Scaffolds Processed by Powder Metallurgy. Metals, 2022, 12, 566.	1.0	0
5	Study of the synthesis of MAX phase Ti3SiC2 powders by pressureless sintering. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2021, 60, 41-52.	0.9	24
6	Injection moulding of porous MAX phase Ti3SiC2 without using space-holder. Powder Technology, 2021, 380, 96-105.	2.1	8
7	Thermophysical properties of porous Ti2AlC and Ti3SiC2 produced by powder metallurgy. Journal of Alloys and Compounds, 2021, 857, 158145.	2.8	14
8	Effect of the Deposition Time and Heating Temperature on the Structure of Chromium Silicides Synthesized by Pack Cementation Process. Corrosion and Materials Degradation, 2021, 2, 210-226.	1.0	3
9	Multi-component boron and niobium coating on M2 high speed steel processed by powder metallurgy. Surface and Coatings Technology, 2020, 384, 125306.	2.2	16
10	Interactions between wear and corrosion on cast and sintered Ti-12Nb alloy in comparison with the commercial Ti-6Al-4V alloy. Corrosion Science, 2020, 176, 108925.	3.0	15
11	Beta Titanium Alloys Produced from Titanium Hydride: Effect of Alloying Elements on Titanium Hydride Decomposition. Metals, 2020, 10, 682.	1.0	15
12	Oxidation and Corrosion Behavior of New Low-Cost Ti-7Fe-3Al and Ti-7Fe-5Cr Alloys from Titanium Hydride Powders. Metals, 2020, 10, 254.	1.0	8
13	Development of Ti–Nb and Ti–Nb–Fe beta alloys from TiH ₂ powders. Powder Metallurgy, 2019, 62, 44-53.	0.9	14
14	Dry sliding wear behaviour of \hat{l}^2 -type Ti-Nb and Ti-Mo surfaces designed by diffusion treatments for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91, 335-344.	1.5	26
15	Dise $ ilde{A}$ ±o y caracterizaci $ ilde{A}$ 3n de tres aleaciones multiprincipales ligeras potencialmente candidatas a aleaciones de alta entrop $ ilde{A}$ a. Revista De Metalurgia, 2019, 55, 147.	0.1	2
16	Cellular behaviour of bone marrow stromal cells on modified Ti-Nb surfaces. Materials and Design, 2018, 140, 452-459.	3.3	23
17	Role of beta-stabilizing elements on the microstructure and mechanical properties evolution of modified PM Ti surfaces designed for biomedical applications. Powder Metallurgy, 2018, 61, 90-99.	0.9	5
18	In-vitro study of the bioactivity and cytotoxicity response of Ti surfaces modified by Nb and Mo diffusion treatments. Surface and Coatings Technology, 2018, 335, 148-158.	2.2	20

#	Article	lF	CITATIONS
19	Corrosion and tribocorrosion behaviour of \hat{l}^2 -type Ti-Nb and Ti-Mo surfaces designed by diffusion treatments for biomedical applications. Corrosion Science, 2018, 140, 51-60.	3.0	59
20	Influence of porosity on elastic properties of Ti2AlC and Ti3SiC2 MAX phase foams. Journal of Alloys and Compounds, 2018, 764, 24-35.	2.8	25
21	Experimental and thermodynamic considerations of Mg 2 Si coatings deposited by pack cementation process. Superlattices and Microstructures, 2017, 101, 76-86.	1.4	3
22	Processing and analysis of FeNbC cermets. International Journal of Refractory Metals and Hard Materials, 2017, 62, 29-36.	1.7	4
23	Surface Modification of Powder Metallurgy Titanium by Colloidal Techniques and Diffusion Processes for Biomedical Applications. Advanced Engineering Materials, 2017, 19, 1600207.	1.6	6
24	The Effects of Nb and Mo Addition on Microstructure and Mechanical Behaviour of Ti-6Al-4V Alloy. Journal of Surface Science and Technology, 2017, 33, 53.	0.3	13
25	Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process. Materials Characterization, 2016, 118, 494-504.	1.9	21
26	Boronizing of Iron-Based Alloys. , 2016, , 376-400.		4
27	MAX phase Ti2AlC foams using a leachable space-holder material. Journal of Alloys and Compounds, 2015, 646, 1036-1042.	2.8	28
28	MAX phase foams produced via powder metallurgy process using water soluble space holder. Powder Metallurgy, 2015, 58, 95-99.	0.9	7
29	Cermets based on FeAl–NbC from composite powders: Design of composition and processing. International Journal of Refractory Metals and Hard Materials, 2015, 48, 324-332.	1.7	10
30	Influence of heat treatment on the high temperature oxidation mechanisms of an Fe–TiCN cermet. Journal of Alloys and Compounds, 2014, 591, 72-79.	2.8	27
31	Oxidation and corrosion protection by halide treatment of powder metallurgy Ti and Ti6Al4V alloy. Corrosion Science, 2014, 88, 263-274.	3.0	22
32	Influence of carbon content on the sinterability of an FeCr matrix cermet reinforced with TiCN. International Journal of Refractory Metals and Hard Materials, 2013, 36, 283-288.	1.7	25
33	Flow, thermal and structural application of Ni-foam as volumetric solar receiver. Solar Energy Materials and Solar Cells, 2013, 109, 185-191.	3.0	31
34	Microstructure and elevated-temperature erosion-oxidation behaviour of aluminized 9Cr-1Mo Steel. Applied Surface Science, 2012, 259, 674-684.	3.1	10
35	Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract. Materials Letters, 2012, 76, 18-20.	1.3	210
36	Boro-aluminising of P91 steel by pack cementation for protection against steam oxidation. Corrosion Engineering Science and Technology, 2011, 46, 697-700.	0.7	2

#	Article	IF	Citations
37	Effect of substrate temperature on the microstructure and properties of thick plasma-sprayed YSZ TBCs. Journal of the European Ceramic Society, 2011, 31, 2923-2929.	2.8	44
38	The use of dolomite as foaming agent and its effect on the microstructure of aluminium metal foams—Comparison to titanium hydride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 382, 118-123.	2.3	9
39	Fabrication and examination of oxidation resistance of zinc coated copper and brass components by chemical deposition. Surface Engineering, 2011, 27, 362-367.	1.1	7
40	Surface Modification of Nickel Foams by a Slurry Aluminizing Process. , 2010, , .		O
41	A novel method for producing Al-foams and evaluation of their compression behavior. Journal of Porous Materials, 2010, 17, 773-777.	1.3	21
42	Effect of dopants on the phase stability of zirconia-based plasma sprayed thermal barrier coatings. Journal of the European Ceramic Society, 2010, 30, 61-72.	2.8	108
43	Symmetry effects and their influence on the mechanical behavior of open and closed cell Al foams. Materials & Design, 2010, 31, 4490-4495.	5.1	7
44	Boride coatings obtained by pack cementation deposited on powder metallurgy and wrought Ti and Ti–6Al–4V. Surface and Coatings Technology, 2010, 205, 2340-2347.	2.2	30
45	The effect of Al and Cr additions on pack cementation zinc coatings. Applied Surface Science, 2010, 256, 3618-3623.	3.1	25
46	Determination of Mechanical and Corrosion Properties of Boride Coating on P91 Steel. Key Engineering Materials, 2010, 438, 89-96.	0.4	O
47	Aluminizing nickel foam by a slurry coating process. Materials Letters, 2009, 63, 1387-1389.	1.3	10
48	Sintering characteristics of plasma sprayed zirconia coatings containing different stabilisers. Surface and Coatings Technology, 2009, 203, 1069-1074.	2.2	100
49	Improvement of 9% Ferritic Steel Against Cyclic Oxidation by CVD-FBR Al–Mn Coating. Oxidation of Metals, 2008, 69, 77-94.	1.0	3
50	Boroaluminide coatings on ferritic–martensitic steel deposited by low-temperature pack cementation. Surface and Coatings Technology, 2008, 202, 3263-3271.	2.2	32
51	Study of the cyclic oxidation resistance of Al coated ferritic steels with 9 and 12%Cr. Corrosion Science, 2007, 49, 3850-3865.	3.0	36
52	Al–Mn CVD-FBR protective coatings for hot corrosion application. Surface and Coatings Technology, 2007, 201, 4489-4495.	2.2	10
53	A steady-state Bi-substrate technique for measurement of the thermal conductivity of ceramic coatings. Surface and Coatings Technology, 2006, 201, 1414-1420.	2.2	38
54	Silicon coating on ferritic steels by CVD-FBR technology. Surface and Coatings Technology, 2006, 201, 3953-3958.	2.2	6

#	Article	IF	CITATIONS
55	An Analytical Model for Simulation of Heat Flow in Plasma-Sprayed Thermal Barrier Coatings. Journal of Thermal Spray Technology, 2005, 14, 205-214.	1.6	78
56	The Effect of a High Thermal Gradient on Sintering and Stiffening in the Top Coat of a Thermal Barrier Coating System. Journal of Thermal Spray Technology, 2004, 13, 370-376.	1.6	59
57	Effect of high energy ball milling on titanium-hydroxyapatite powders. Powder Metallurgy, 2003, 46, 73-77.	0.9	8
58	MECHANICAL AND OXIDATION PROPERTIES OF Ni3Al-BASED ALLOYS. Materials and Manufacturing Processes, 2001, 16, 127-140.	2.7	4