Daniel Bélanger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1239637/publications.pdf

Version: 2024-02-01

172 papers 17,234 citations

56 h-index 128 g-index

174 all docs

174 docs citations

times ranked

174

16046 citing authors

#	Article	IF	CITATIONS
1	Charge Storage Mechanism of MnO2Electrode Used in Aqueous Electrochemical Capacitor. Chemistry of Materials, 2004, 16, 3184-3190.	6.7	2,436
2	To Be or Not To Be Pseudocapacitive?. Journal of the Electrochemical Society, 2015, 162, A5185-A5189.	2.9	2,085
3	Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide. Chemistry of Materials, 2002, 14, 3946-3952.	6.7	913
4	Electrografting: a powerful method for surface modification. Chemical Society Reviews, 2011, 40, 3995.	38.1	841
5	Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. Journal of Power Sources, 2007, 173, 633-641.	7.8	453
6	Electrochemical Modification of Glassy Carbon Electrode Using Aromatic Diazonium Salts. 1. Blocking Effect of 4-Nitrophenyl and 4-Carboxyphenyl Groups. Langmuir, 1997, 13, 6805-6813.	3 . 5	447
7	Asymmetric electrochemical capacitorsâ€"Stretching the limits of aqueous electrolytes. MRS Bulletin, 2011, 36, 513-522.	3 . 5	368
8	Synthesis and characterization of sulfophenyl-functionalized reduced graphene oxide sheets. RSC Advances, 2017, 7, 27224-27234.	3.6	363
9	Electrochemical Derivatization of Carbon Surface by Reduction of in Situ Generated Diazonium Cations. Journal of Physical Chemistry B, 2005, 109, 24401-24410.	2.6	339
10	Variation of the MnO ₂ Birnessite Structure upon Charge/Discharge in an Electrochemical Supercapacitor Electrode in Aqueous Na ₂ SO ₄ Electrolyte. Journal of Physical Chemistry C, 2008, 112, 7270-7277.	3.1	332
11	Manganese Oxides: Battery Materials Make the Leap to Electrochemical Capacitors. Electrochemical Society Interface, 2008, 17, 49-52.	0.4	317
12	Characterization of the Deposition of Organic Molecules at the Surface of Gold by the Electrochemical Reduction of Aryldiazonium Cations. Langmuir, 2005, 21, 6855-6865.	3.5	286
13	Direct Modification of a Gold Electrode with Aminophenyl Groups by Electrochemical Reduction of in Situ Generated Aminophenyl Monodiazonium Cations. Chemistry of Materials, 2006, 18, 4755-4763.	6.7	250
14	Study of the electroreduction of nitrate on copper in alkaline solution. Electrochimica Acta, 2008, 53, 5977-5984.	5.2	233
15	Spontaneous Functionalization of Carbon Black by Reaction with 4-Nitrophenyldiazonium Cations. Langmuir, 2008, 24, 1910-1917.	3 . 5	185
16	Performance of experimental carbon blacks in aqueous supercapacitors. Journal of Power Sources, 2005, 140, 203-210.	7.8	184
17	Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes. Electrochimica Acta, 2007, 52, 6237-6247.	5.2	184
18	Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon. Journal of Power Sources, 2011, 196, 4117-4122.	7.8	182

#	Article	IF	Citations
19	Characterization and Transport Properties of Nafion/Polyaniline Composite Membranes. Journal of Physical Chemistry B, 2005, 109, 23480-23490.	2.6	170
20	Thermal Stability Study of Aryl Modified Carbon Black by in Situ Generated Diazonium Salt. Journal of Physical Chemistry C, 2007, 111, 5394-5401.	3.1	161
21	Stability of Substituted Phenyl Groups Electrochemically Grafted at Carbon Electrode Surface. Journal of Physical Chemistry B, 2003, 107, 4811-4817.	2.6	157
22	Effect of molecular grafting on the pore size distribution and the double layer capacitance of activated carbon for electrochemical double layer capacitors. Carbon, 2011, 49, 1340-1348.	10.3	147
23	Electrochemical Properties of Ruthenium-Based Nanocrystalline Materials as Electrodes for Supercapacitors. Chemistry of Materials, 2002, 14, 1210-1215.	6.7	142
24	Nitrate removal by a paired electrolysis on copper and Ti/lrO2 coupled electrodes – Influence of the anode/cathode surface area ratio. Water Research, 2010, 44, 1918-1926.	11.3	140
25	Advances on the use of diazonium chemistry for functionalization of materials used in energy storage systems. Carbon, 2015, 92, 362-381.	10.3	132
26	Electropolymerization of Polypyrrole and Polyanilineâ^Polypyrrole from Organic Acidic Medium. Journal of Physical Chemistry B, 1999, 103, 9044-9054.	2.6	125
27	Chemical Coupling of Carbon Nanotubes and Silicon Nanoparticles for Improved Negative Electrode Performance in Lithium″on Batteries. Advanced Functional Materials, 2011, 21, 3524-3530.	14.9	124
28	Electrochemical Polymerization and Characterization of Poly(3-(4-fluorophenyl)thiophene) in Pure lonic Liquids. Journal of Physical Chemistry B, 2002, 106, 10585-10593.	2.6	123
29	Graphiteâ€Grafted Silicon Nanocomposite as a Negative Electrode for Lithium″on Batteries. Advanced Materials, 2009, 21, 4735-4741.	21.0	122
30	Electrocatalytic reduction of nitrate on copper electrodes prepared by high-energy ball milling. Journal of Electroanalytical Chemistry, 2006, 596, 13-24.	3.8	121
31	Catechol-Modified Activated Carbon Prepared by the Diazonium Chemistry for Application as Active Electrode Material in Electrochemical Capacitor. ACS Applied Materials & Interfaces, 2012, 4, 3788-3796.	8.0	110
32	Electrochemical behavior of platinum, gold and glassy carbon electrodes in water-in-salt electrolyte. Electrochemistry Communications, 2017, 77, 89-92.	4.7	103
33	Optimization of the cathode material for nitrate removal by a paired electrolysis process. Journal of Hazardous Materials, 2011, 192, 507-513.	12.4	102
34	In situ generation of diazonium cations in organic electrolyte for electrochemical modification of electrode surface. Electrochimica Acta, 2008, 53, 6961-6967.	5.2	98
35	Evaluation of nafion as media for glucose oxidase immobilization for the development of an amperometric glucose biosensor. Electroanalysis, 1992, 4, 275-283.	2.9	95
36	Physicochemical and Electrochemical Characterization of Polycyclopenta[2,1-b;3,4-bâ€~]dithiophen-4-one as an Active Electrode for Electrochemical Supercapacitors. Chemistry of Materials, 1999, 11, 2743-2753.	6.7	93

#	Article	IF	Citations
37	Functionalization of graphene sheets by the diazonium chemistry during electrochemical exfoliation of graphite. Carbon, 2017, 111, 83-93.	10.3	91
38	Modification of Carbon Electrode with Aryl Groups Having an Aliphatic Amine by Electrochemical Reduction of In Situ Generated Diazonium Cations. Langmuir, 2008, 24, 8711-8718.	3.5	86
39	Expedient Synthesis of Symmetric Aryl Ketones and of Ambient-Temperature Molten Salts of Imidazole. Synthesis, 2000, 2000, 1253-1258.	2.3	84
40	Electrochemical characterization of MnO2-based composite in the presence of salt-in-water and water-in-salt electrolytes as electrode for electrochemical capacitors. Journal of Power Sources, 2016, 326, 595-603.	7.8	83
41	Cu–Ni materials prepared by mechanical milling: Their properties and electrocatalytic activity towards nitrate reduction in alkaline medium. Journal of Alloys and Compounds, 2007, 432, 323-332.	5.5	82
42	Characterization of the biochemical behavior of glucose oxidase entrapped in a polypyrrole film. Biotechnology and Bioengineering, 1991, 37, 854-858.	3.3	81
43	Elaboration of Cuâ^Pd Films by Coelectrodeposition: Application to Nitrate Electroreduction. Journal of Physical Chemistry C, 2009, 113, 290-297.	3.1	81
44	Functionalization of Glassy Carbon Electrodes with Metal-Based Species. Chemistry of Materials, 2005, 17, 2395-2403.	6.7	75
45	Poly(Cyano-Substituted Diheteroareneethylene) as Active Electrode Material for Electrochemical Supercapacitors. Chemistry of Materials, 2000, 12, 2581-2589.	6.7	74
46	Modification of ion-exchange membrane used for separation of protons and metallic cations and characterization of the membrane by current–voltage curves. Journal of Colloid and Interface Science, 2005, 281, 179-187.	9.4	74
47	Carbon/PbO2 asymmetric electrochemical capacitor based on methanesulfonic acid electrolyte. Electrochimica Acta, 2011, 56, 8122-8128.	5.2	73
48	In Situ Formation of Diazonium Salts from Nitro Precursors for Scanning Electrochemical Microscopy Patterning of Surfaces. Angewandte Chemie - International Edition, 2009, 48, 4006-4008.	13.8	72
49	Development of new nanocomposite based on nanosized-manganese oxide and carbon nanotubes for high performance electrochemical capacitors. Electrochimica Acta, 2010, 55, 3428-3433.	5.2	69
50	Spontaneous Derivatization of a Copper Electrode with in Situ Generated Diazonium Cations in Aprotic and Aqueous Media. Journal of Physical Chemistry C, 2007, 111, 7501-7507.	3.1	68
51	Thin films of pure vanadium nitride: Evidence for anomalous non-faradaic capacitance. Journal of Power Sources, 2016, 324, 439-446.	7.8	67
52	Synthesis, chemical polymerization and electrochemical properties of low band gap conducting polymers for use in supercapacitors. Journal of Materials Chemistry, 2001, 11, 773-782.	6.7	65
53	Electrochemical study of anthraquinone groups, grafted by the diazonium chemistry, in different aqueous media-relevance for the development of aqueous hybrid electrochemical capacitor. Electrochimica Acta, 2012, 82, 250-256.	5.2	65
54	Characterization of a Cation-Exchange/Polyaniline Composite Membrane. Langmuir, 2003, 19, 744-751.	3.5	64

#	Article	IF	CITATIONS
55	Suitable Conditions for the Use of Vanadium Nitride as an Electrode for Electrochemical Capacitor. Journal of the Electrochemical Society, 2016, 163, A1077-A1082.	2.9	64
56	Chemical Polymerization of Aniline on a Poly(styrene sulfonic acid) Membrane:Â Controlling the Polymerization Site Using Different Oxidants. Journal of Physical Chemistry B, 2005, 109, 14085-14092.	2.6	61
57	Beyond garnets, phosphates and phosphosulfides solid electrolytes: New ceramic perspectives for all solid lithium metal batteries. Journal of Power Sources, 2021, 482, 228949.	7.8	59
58	Chemical modification of carbon powders with aminophenyl and aryl-aliphatic amine groups by reduction of in situ generated diazonium cations: Applicability of the grafted powder towards CO2 capture. Fuel, 2011, 90, 2684-2693.	6.4	57
59	Spectroscopic Investigation of a Polypyrrole / MoS4 2 â^'  / MoS3 Composite Film Elect Solution. Journal of the Electrochemical Society, 1995, 142, 2296-2301.	trode in Ac	qygous KC
60	Development of Biosensors Based on Immobilization of Enzymes in Eastman AQ Polymer Coated with a Layer of Nafion. Analytical Letters, 1990, 23, 1607-1619.	1.8	55
61	Synthesis and electrochemical polymerization of poly [3-(1-naphthylthiophene)]. Synthetic Metals, 1997, 84, 207-208.	3.9	54
62	The electrochemical generation of ferrate at pressed iron powder electrodes: effect of various operating parameters. Electrochimica Acta, 2003, 48, 1425-1433.	5.2	50
63	The Electrochemical Grafting of a Mixture of Substituted Phenyl Groups at a Glassy Carbon Electrode Surface. ChemPhysChem, 2008, 9, 1164-1170.	2.1	50
64	Study of the Electroless Deposition of Pd on Cu-Modified Graphite Electrodes by Metal Exchange Reaction. Chemistry of Materials, 2008, 20, 3495-3504.	6.7	50
65	Synthesis of Pt–Ir catalysts by coelectrodeposition: Application to ammonia electrooxidation in alkaline media. Journal of Power Sources, 2013, 223, 221-231.	7.8	50
66	Simpler and greener grafting method for improving the stability of anthraquinone-modified carbon electrode in alkaline media. Electrochimica Acta, 2014, 137, 447-453.	5.2	50
67	Rhodium electrodeposition on pyrolytic graphite electrode: Analysis of chronoamperometric curves. Journal of Electroanalytical Chemistry, 2005, 581, 22-30.	3.8	49
68	Impedance study of polypyrrole films doped with tetrathiomolybdate anions and containing molybdenum trisulfide. The Journal of Physical Chemistry, 1993, 97, 12373-12378.	2.9	48
69	Self-discharge of electrochemical capacitors based on soluble or grafted quinone. Physical Chemistry Chemical Physics, 2016, 18, 19137-19145.	2.8	48
70	The electrodeposition of amorphous molybdenum sulfide. Journal of Electroanalytical Chemistry, 1993, 347, 165-183.	3.8	47
71	Electrochemical Modification of Poly(3-(4-Fluorophenyl)thiophene). Langmuir, 2000, 16, 4362-4366.	3.5	47
72	Microelectrochemical transistors based on electrostatic binding of electroactive metal complexes in protonated poly(4-vinylpyridine): devices that respond to two chemical stimuli. Analytical Chemistry, 1987, 59, 1426-1432.	6.5	46

#	Article	IF	CITATIONS
73	Polypyrrole film electrodes electrochemically doped with tetrathiomolybdate anions: preparation and characterization. Journal of Electroanalytical Chemistry, 1992, 334, 35-55.	3.8	46
74	Poly(3-arylthiophenes):  Syntheses of Monomers and Spectroscopic and Electrochemical Characterization of the Corresponding Polymers. Chemistry of Materials, 2001, 13, 634-642.	6.7	46
75	Copper electrodeposition on pyrolytic graphite electrodes: Effect of the copper salt on the electrodeposition process. Electrochimica Acta, 2007, 52, 5843-5855.	5.2	46
76	A Comparison among Viscosity, Density, Conductivity, and Electrochemical Windows of <i>N</i> - <i>n</i> -Butyl- <i>N</i> -Bis(fluorosulfonyl imide) Ionic Liquids and Their Analogues Containing Bis(trifluoromethylsulfonyl) Imide Anion, Journal of Chemical & Camp; Engineering Data, 2017, 62, 3437-3444.	1.9	46
77	Rhodium deposits on pyrolytic graphite substrate: Physico-chemical properties and electrocatalytic activity towards nitrate reduction in neutral medium. Applied Catalysis B: Environmental, 2006, 64, 243-253.	20.2	45
78	New insight in the electrochemical behaviour of stainless steel electrode in water-in-salt electrolyte. Journal of Power Sources, 2018, 399, 299-303.	7.8	44
79	The electrochemical generation of ferrate at pressed iron powder electrode: comparison with a foil electrode. Electrochimica Acta, 2003, 48, 1435-1442.	5.2	43
80	Electrochemical Surface Nanopatterning Using Microspheres and Aryldiazonium. Langmuir, 2010, 26, 5991-5997.	3.5	43
81	Chemical Mapping and Electrochemical Performance of Manganese Dioxide/Activated Carbon Based Composite Electrode for Asymmetric Electrochemical Capacitor. Journal of the Electrochemical Society, 2015, 162, A5115-A5123.	2.9	43
82	Randomly oriented graphite electrode. Part 1. Effect of electrochemical pretreatment on the electrochemical behavior and chemical composition of the electrode. Journal of Electroanalytical Chemistry, 1996, 415, 47-54.	3.8	42
83	Physicochemical and Electrochemical Properties of Waterâ€inâ€Salt Electrolytes. ChemSusChem, 2021, 14, 2487-2500.	6.8	41
84	Chemical reactivity of 4-bromophenyl modified glassy carbon electrode. Electrochemistry Communications, 2004, 6, 254-258.	4.7	40
85	Chemical Modification of the Surface of a Sulfonated Membrane by Formation of a Sulfonamide Bond. Langmuir, 2004, 20, 4989-4995.	3.5	40
86	Physicochemical characteristics of electrochemically deposited molybdenum sulfide and polypyrrole-tetrathiomolybdate/molybdenum trisulfide composite electrodes. Chemistry of Materials, 1993, 5, 861-868.	6.7	39
87	Electrodeposition of iridium onto glassy carbon and platinum electrodes. Electrochimica Acta, 2012, 59, 49-56.	5.2	39
88	Synthesis of binder-like molecules covalently linked to silicon nanoparticles and application as anode material for lithium-ion batteries without the use of electrolyte additives. Journal of Power Sources, 2017, 345, 190-201.	7.8	39
89	The Role of Surface Hydrogen Atoms in the Electrochemical Reduction of Pyridine and CO ₂ in Aqueous Electrolyte. ChemElectroChem, 2014, 1, 1013-1017.	3.4	37
90	Chemical modifications of carbon powders with aminophenyl and cyanophenyl groups and a study of their reactivity. Carbon, 2010, 48, 1271-1278.	10.3	36

#	Article	IF	Citations
91	Determination of the Quinone-loading of a Modified Carbon Powder-based Electrode for Electrochemical Capacitor. Electrochemistry, 2013, 81, 863-866.	1.4	36
92	EQCM study of electrodeposited PbO2: Investigation of the gel formation and discharge mechanisms. Electrochimica Acta, 2009, 54, 7382-7388.	5.2	32
93	Multifunctional Carbon for Electrochemical Double‣ayer Capacitors. Advanced Functional Materials, 2015, 25, 6775-6785.	14.9	32
94	Electrochemical and Enzymatic Studies of Electron Transfer Mediation by Ferrocene Derivatives with Nafion-Glucose Oxidase Electrodes. Electroanalysis, 1999, 11, 23-31.	2.9	31
95	Electrochemical functionalization of glassy carbon electrode by reduction of diazonium cations in protic ionic liquid. Electrochimica Acta, 2013, 106, 378-385.	5.2	31
96	New generation of hybrid carbon/Ni(OH)2 electrochemical capacitor using functionalized carbon electrode. Journal of Power Sources, 2016, 326, 702-710.	7.8	31
97	Electrochromic Behavior of Molybdenum Trioxide Thin Films, Prepared by Thermal Oxidation of Electrodeposited Molybdenum Trisulfide, in Mixtures of Nonaqueous and Aqueous Electrolytes. Journal of the Electrochemical Society, 1996, 143, 3109-3117.	2.9	30
98	Metallic and bimetallic Cu/Pt species supported on carbon surfaces by means of substituted phenyl groups. Journal of Electroanalytical Chemistry, 2007, 609, 85-93.	3.8	30
99	Producing high-performing silicon anodes by tailoring ionic liquids as electrolytes. Energy Storage Materials, 2020, 25, 477-486.	18.0	30
100	Fast and easy preparation of an amperometric glucose biosensor. Biotechnology Letters, 1988, 2, 177-182.	0.5	29
101	Chemical synthesis and characterization of polyaniline-molybdenum trisulfide composite. Journal of Materials Research, 1999, 14, 1805-1813.	2.6	29
102	Patterning of Surfaces by Oxidation of Amineâ€Containing Compounds Using Scanning Electrochemical Microscopy. Angewandte Chemie - International Edition, 2009, 48, 7395-7397.	13.8	29
103	Formation and Reactivity of 3-Diazopyridinium Cations and Influence on Their Reductive Electrografting on Glassy Carbon. Langmuir, 2012, 28, 4889-4895.	3.5	29
104	Pyromellitic Diimide-Based Copolymers and Their Application as Stable Cathode Active Materials in Lithium and Sodium-Ion Batteries. Chemistry of Materials, 2018, 30, 6821-6830.	6.7	29
105	Electrochromic molybdenum trioxide thin film preparation and characterization. Chemistry of Materials, 1990, 2, 484-486.	6.7	28
106	Electrochemistry and Reactivity of Surface-Confined Catechol Groups Derived from Diazonium Reduction. Bias-Assisted Michael Addition at the Solid/Liquid Interface. Langmuir, 2009, 25, 3504-3508.	3.5	28
107	Characterization of LiNi0.5Mn1.5O4 spinel electrode in the presence of 1,3,5-trihydroxybenzene as additive. Journal of Materials Chemistry A, 2015, 3, 2776-2783.	10.3	27
108	Poly(5-alkyl-thieno[3,4-c]pyrrole-4,6-dione): a study of π-conjugated redox polymers as anode materials in lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 18088-18094.	10.3	27

#	Article	IF	CITATIONS
109	Enhancing the electrocatalytic activity of Fe phthalocyanines for the oxygen reduction reaction by the presence of axial ligands: Pyridine-functionalized single-walled carbon nanotubes. Electrochimica Acta, 2021, 398, 139263.	5.2	27
110	Chemical Synthesis and Electrochemical Properties of Poly(cyano-substituted-diheteroareneethylene) as Conducting Polymers for Electrochemical Supercapacitors. Journal of the Electrochemical Society, 2001, 148, A775.	2.9	26
111	Carbon surface derivatization by electrochemical reduction of a diazonium salt in situ produced from the nitro precursor. Journal of Electroanalytical Chemistry, 2011, 661, 13-19.	3.8	26
112	Increasing the Affinity Between Carbon-Coated LiFePO ₄ /C Electrodes and Conventional Organic Electrolyte by Spontaneous Grafting of a Benzene-Trifluoromethylsulfonimide Moiety. ACS Applied Materials & Diterfaces, 2015, 7, 18519-18529.	8.0	25
113	Oxygen reduction on graphene sheets functionalised by anthraquinone diazonium compound during electrochemical exfoliation of graphite. Electrochimica Acta, 2018, 267, 246-254.	5.2	25
114	Enhancement of response by incorporation of platinum microparticles into a polypyrrole-glucose oxidase electrode. Analytica Chimica Acta, 1990, 228, 311-315.	5.4	24
115	Electrochemical characterization in nonaqueous electrolyte of polyaniline electrochemically prepared from aqueous media. Canadian Journal of Chemistry, 1997, 75, 1536-1541.	1.1	24
116	Silicon as anode for high-energy lithium ion batteries: From molten ingot to nanoparticles. Journal of Power Sources, 2015, 299, 529-536.	7.8	24
117	Electrochemical accessibility of porous submicron MnO2 spheres as active electrode materials for electrochemical capacitors. Electrochimica Acta, 2016, 201, 20-29.	5.2	24
118	Electrochemical preparation and characterization of polypyrrole doped with bis(trifluoromethanesulfone) imide anions. Synthetic Metals, 1998, 98, 135-141.	3.9	23
119	Electrochemical and Spectroelectrochemical Evidence of Redox Transitions Involving Protons in Thin MnO ₂ Electrodes in Protic Ionic Liquids. Journal of Physical Chemistry C, 2013, 117, 20397-20405.	3.1	23
120	Pyrene Diimide Based π-Conjugated Copolymer and Single-Walled Carbon Nanotube Composites for Lithium-Ion Batteries. Chemistry of Materials, 2019, 31, 8764-8773.	6.7	22
121	Rotating ring-disk electrode studies of polypyrrole-glucose oxidase biosensors. Electroanalysis, 1992, 4, 933-940.	2.9	21
122	X-ray photoelectron spectroscopy studies of the electrochemically n-doped state of a conducting polymer. Synthetic Metals, 2002, 132, 71-79.	3.9	21
123	Mixtures of functionalized aromatic groups generated from diazonium chemistry as templates towards bimetallic species supported on carbon electrode surfaces. Electrochimica Acta, 2012, 85, 538-547.	5.2	21
124	Electrochemical Oxidation of NH ₃ on Platinum Electrodeposited onto Graphite Electrode. Journal of the Electrochemical Society, 2012, 159, F91-F96.	2.9	21
125	Chemically grafted carbon-coated LiFePO4 using diazonium chemistry. Journal of Power Sources, 2015, 280, 246-255.	7.8	21
126	Graphene nanosheets and polyacrylic acid grafted silicon composite anode for lithium ion batteries. Journal of Power Sources, 2018, 391, 41-50.	7.8	21

#	Article	IF	Citations
127	Functionalization of the carbon additive of a high-voltage Li-ion cathode. Journal of Materials Chemistry A, 2019, 7, 1585-1597.	10.3	21
128	Electrochemical Formation of an Ultrathin Electroactive Film from 1,10-Phenanthroline on a Glassy Carbon Electrode in Acidic Electrolyte. Langmuir, 2014, 30, 6612-6621.	3.5	20
129	Electrochemical and In Situ Spectroelectrochemical Study on Polypyrrole/Disulfide Composite Electrode. Journal of the Electrochemical Society, 1994, 141, L49-L50.	2.9	19
130	Electrochemical preparation and characterization in non-aqueous electrolyte of polyaniline electrochemically prepared from an anilinium salt. Journal of Electroanalytical Chemistry, 1998, 459, 1-7.	3.8	19
131	Modification of Glassy Carbon Electrode by Electrografting of In Situ Generated 3-diazopyridinium Cations. Journal of the Electrochemical Society, 2012, 159, H758-H764.	2.9	19
132	Localized In situ Generation of Diazonium Cations by Electrocatalytic Formation of a Diazotization Reagent. ACS Applied Materials & Samp; Interfaces, 2013, 5, 1468-1473.	8.0	19
133	Electrochemical Capacitors: Fundamentals to Applications. Journal of the Electrochemical Society, 2015, 162, Y3-Y3.	2.9	19
134	A Redoxâ€Active Binder for Electrochemical Capacitor Electrodes. Angewandte Chemie - International Edition, 2016, 55, 5318-5321.	13.8	19
135	Electron Transfer Processes at Arylâ€Modified Glassy Carbon Electrode. Electroanalysis, 2009, 21, 1499-1504.	2.9	18
136	Modification of glassy carbon electrodes by 4-chloromethylphenyl units and d-glucosaminic acid. Electrochimica Acta, 2009, 54, 6327-6334.	5.2	18
137	Polypyrrole Films Doped with Tetrathiomolybdate Anions: The First Step Toward a Polypyrroleâ€Amorphous Molybdenum Sulfide Electrode. Journal of the Electrochemical Society, 1990, 137, 365-366.	2.9	17
138	Covalent grafting of aminated compounds on Vulcan XC72R by melamine in situ diazotization. Carbon, 2012, 50, 4335-4342.	10.3	17
139	Electrochemical Behavior of Pyridinium and <i>N</i> â€Methyl Pyridinium Cations in Aqueous Electrolytes for CO ₂ Reduction. ChemSusChem, 2018, 11, 219-228.	6.8	17
140	Electrochemical characterization of glassy carbon electrode modified with 1,10-phenanthroline groups by two pathways: reduction of the corresponding diazonium ions and reduction of phenanthroline. Electrochimica Acta, 2015, 162, 146-155.	5.2	16
141	Effect of Manganese Hydroxide Layer on the Electrochemistry of Nickel Hydroxide Thin Films. Journal of the Electrochemical Society, 1990, 137, 2355-2361.	2.9	15
142	A New Polypyrrole/Disulfide Electrode Studied by Electrochemistry and the Electrochemical Quartz Crystal Microbalance. The Journal of Physical Chemistry, 1996, 100, 15848-15855.	2.9	15
143	Electrochemical characterization of polyaniline–molybdenum trisulfide electrode in non-aqueous media. Electrochimica Acta, 2000, 45, 3877-3883.	5.2	15
144	Electrochemical activity of platinum, gold and glassy carbon electrodes in water-in-salt electrolyte. Journal of Electroanalytical Chemistry, 2019, 854, 113538.	3.8	15

#	Article	IF	CITATIONS
145	Surface band structure of aryl-diazonium modified p-Si electrodes determined by X-ray photoelectron spectroscopy and electrochemical measurements. RSC Advances, 2013, 3, 23649.	3.6	14
146	In situ transmission electron microscopy observations of lithiation of spherical silicon nanopowder produced by induced plasma atomization. Journal of Power Sources, 2015, 279, 522-527.	7.8	14
147	Chloroanthraquinone as a grafted probe molecule to investigate grafting yield on carbon powder. Electrochimica Acta, 2016, 197, 139-145.	5.2	14
148	Electrochemical Behavior of Polypyrroleâ€Molybdenum Trisulfideâ€Tetrathiomolybdate Electrode in Nonaqueous Media. Journal of the Electrochemical Society, 1999, 146, 226-231.	2.9	13
149	Effects of the Formulations of Siliconâ€Based Composite Anodes on their Mechanical, Storage, and Electrochemical Properties. ChemSusChem, 2017, 10, 4080-4089.	6.8	12
150	Investigation of Electrochemical and Chemical Processes Occurring at Positive Potentials in "Water-in-Salt―Electrolytes. Journal of the Electrochemical Society, 2021, 168, 050550.	2.9	12
151	Influence of the electrolytic medium composition on the structural evolution of thin electrochromic molybdenum trioxide films probed by x-ray absorption spectroscopy. The Journal of Physical Chemistry, 1992, 96, 7718-7724.	2.9	11
152	Grafting of Quinones on Carbons as Active Electrode Materials in Electrochemical Capacitors. Journal of the Brazilian Chemical Society, 2018, , .	0.6	11
153	Crown Ether Functionalized Conductive Carbon for High-Voltage Spinel LiMn _{1.5} Ni _{0.5} O ₄ /Graphite Cell. ACS Applied Energy Materials, 2020, 3, 647-657.	5.1	11
154	Physicochemical and electrochemical characterization of salt-in-water and water-in-salt potassium and lithium acetate electrolytes. Journal of Materials Chemistry A, 2021, 9, 24012-24023.	10.3	11
155	Electrochemical modification of carbon electrode with benzylphosphonic groups. Electrochimica Acta, 2014, 122, 210-217.	5. 2	9
156	Protection of LiFePO4 against Moisture. Materials, 2020, 13, 942.	2.9	8
157	Aqueous electrochemical energy storage system based on phenanthroline- and anthraquinone-modified carbon electrodes. Electrochimica Acta, 2021, 390, 138862.	5.2	8
158	Preparation and Characterization of Poly[2,3-dimethyl-1-(4-thien-3-ylbenzyl)-1H-imidazol-3-ium] Bis((trifluoromethyl)sulfonyl)imide. Macromolecules, 2002, 35, 4983-4987.	4.8	7
159	A Redoxâ€Active Binder for Electrochemical Capacitor Electrodes. Angewandte Chemie, 2016, 128, 5404-5407.	2.0	7
160	Attachment of redox active molecules on the carbon additive and its effect on the cycling performance of LiFePO4 electrodes. Materials Chemistry and Physics, 2019, 235, 121739.	4.0	7
161	Toward Biosourced Materials for Electrochemical Energy Storage: The Case of Tannins. ACS Sustainable Chemistry and Engineering, 2021, 9, 6079-6086.	6.7	7
162	Zinc Electrodeposition in Acetateâ€based Waterâ€inâ€Salt Electrolyte: Experimental and Theoretical Studies. ChemElectroChem, 2021, 8, 2737-2745.	3.4	7

#	Article	IF	CITATIONS
163	In situ-formed nitrogen-doped carbon/silicon-based materials as negative electrodes for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2021, 901, 115732.	3.8	6
164	In situ formation of bromobenzene diazonium ions and their spontaneous reaction with carbon-coated LiFePO ₄ in organic media. New Journal of Chemistry, 2016, 40, 6135-6140.	2.8	5
165	Surface immobilized azomethine for multiple component exchange. Soft Matter, 2017, 13, 6639-6646.	2.7	5
166	Fabrication of Current Collectors and Binderâ€Free Electrodes on Separators Used in Lithiumâ€Ion Batteries. Batteries and Supercaps, 2020, 3, 638-646.	4.7	5
167	Polythiophenes as Active Electrode Materials for Electrochemical Capacitors. , 0, , 577-594.		4
168	Four Phosphoniumâ€based Ionic Liquids. Synthesis, Characterization and Electrochemical Performance as Electrolytes for Silicon Anodes. ChemistrySelect, 2022, 7, .	1.5	3
169	Synthesis and characterization of aryl substituted functionalized graphene sheets and their electrochemical behavior. Journal of Solid State Electrochemistry, 2021, 25, 149-158.	2.5	2
170	Diazonium Salts and Related Compounds in Electrochemical Energy Storage and Conversion. Physical Chemistry in Action, 2022, , 427-451.	0.6	2
171	MnO2/Carbon Nanocomposite Electrode Prepared Via Molecular Bridging. ECS Meeting Abstracts, 2012,	0.0	0
172	Functionalization of LiFePO4/C by Spontaneous Reduction of In-situ Generated Bromobenzene Diazonium Ions in Organic Media. Materials Research Society Symposia Proceedings, 2015, 1773, 21-26.	0.1	0