Wenwen Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1239195/publications.pdf Version: 2024-02-01

WENNEN XII

#	Article	IF	CITATIONS
1	Tafel Analysis Guided Optimization of Zn _{NP} -O-C Catalysts for the Selective 2-Electron Oxygen Reduction Reaction in Neutral Media. Journal of Physical Chemistry Letters, 2022, 13, 3409-3416.	2.1	11
2	Electrochemical Oxygen Reduction to Hydrogen Peroxide via a Twoâ€Electron Transfer Pathway on Carbonâ€Based Singleâ€Atom Catalysts. Advanced Materials Interfaces, 2021, 8, 2001360.	1.9	35
3	Fast and Stable Electrochemical Production of H ₂ O ₂ by Electrode Architecture Engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 7120-7129.	3.2	24
4	The Critical Role of Additive Sulfate for Stable Alkaline Seawater Oxidation on Nickelâ€Based Electrodes. Angewandte Chemie - International Edition, 2021, 60, 22740-22744.	7.2	108
5	Enhanced interface interaction in Cu2S@Ni core-shell nanorod arrays as hydrogen evolution reaction electrode for alkaline seawater electrolysis. Journal of Power Sources, 2021, 506, 230235.	4.0	40
6	The Critical Role of Additive Sulfate for Stable Alkaline Seawater Oxidation on Nickelâ€Based Electrodes. Angewandte Chemie, 2021, 133, 22922-22926.	1.6	53
7	Atomically dispersed Lewis acid sites boost 2-electron oxygen reduction activity of carbon-based catalysts. Nature Communications, 2020, 11, 5478.	5.8	114
8	Understanding of Dynamic Contacting Behaviors of Underwater Gas Bubbles on Solid Surfaces. Langmuir, 2020, 36, 11422-11428.	1.6	7
9	Recent Progress on Carbonaceous Material Engineering for Electrochemical Hydrogen Peroxide Generation. Transactions of Tianjin University, 2020, 26, 188-196.	3.3	28
10	Recent Advances in Nonâ€Precious Metalâ€Based Electrodes for Alkaline Water Electrolysis. ChemNanoMat, 2020, 6, 336-355.	1.5	92
11	Common-Ion Effect Triggered Highly Sustained Seawater Electrolysis with Additional NaCl Production. Research, 2020, 2020, 2872141.	2.8	28
12	An advanced zinc air battery with nanostructured superwetting electrodes. Energy Storage Materials, 2019, 17, 358-365.	9.5	25
13	Superaerophilic copper nanowires for efficient and switchable CO ₂ electroreduction. Nanoscale Horizons, 2019, 4, 490-494.	4.1	39
14	Engineering Interfacial Aerophilicity of Nickel-Embedded Nitrogen-Doped CNTs for Electrochemical CO ₂ Reduction. ACS Applied Energy Materials, 2019, 2, 3991-3998.	2.5	23
15	Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Research, 2019, 12, 345-349.	5.8	80
16	Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nature Communications, 2018, 9, 924.	5.8	571
17	Boosting oxygen reaction activity by coupling sulfides for high-performance rechargeable metal–air battery. Journal of Materials Chemistry A, 2018, 6, 21162-21166.	5.2	38
18	Unlocking Bifunctional Electrocatalytic Activity for CO ₂ Reduction Reaction by Win-Win Metal–Oxide Cooperation. ACS Energy Letters, 2018, 3, 2816-2822.	8.8	76

Wenwen Xu

#	Article	IF	CITATIONS
19	Superwetting Electrodes for Gas-Involving Electrocatalysis. Accounts of Chemical Research, 2018, 51, 1590-1598.	7.6	411
20	Superaerophilic Carbonâ€Nanotubeâ€Array Electrode for Highâ€Performance Oxygen Reduction Reaction. Advanced Materials, 2016, 28, 7155-7161.	11.1	231
21	Dehydrated layered double hydroxides: Alcohothermal synthesis and oxygen evolution activity. Nano Research, 2016, 9, 3152-3161.	5.8	30
22	High-Performance Water Electrolysis System with Double Nanostructured Superaerophobic Electrodes. Small, 2016, 12, 2492-2498.	5.2	113
23	Superaerophobic Electrodes for Direct Hydrazine Fuel Cells. Advanced Materials, 2015, 27, 2361-2366.	11.1	232
24	Morphology and Phase Evolution of CoAl Layered Double Hydroxides in an Alkaline Environment with Enhanced Pseudocapacitive Performance. ChemElectroChem, 2015, 2, 679-683.	1.7	16
25	A hierarchical Ni–Co–O@Ni–Co–S nanoarray as an advanced oxygen evolution reaction electrode. Physical Chemistry Chemical Physics, 2014, 16, 20402-20405.	1.3	54
26	A 3D Nanoporous Ni-Mo Electrocatalyst with Negligible Overpotential for Alkaline Hydrogen Evolution. ChemElectroChem, 2014, 1, 1089-1089.	1.7	1
27	Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chemical Communications, 2014, 50, 6479-6482.	2.2	776
28	A 3D Nanoporous Ni–Mo Electrocatalyst with Negligible Overpotential for Alkaline Hydrogen Evolution. ChemElectroChem, 2014, 1, 1138-1144.	1.7	113