Xiao-Hong Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1239181/publications.pdf

Version: 2024-02-01

174 3,056 29 43
papers citations h-index g-index

174 174 174 4264
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Control of photocurrent and multi-state memory by polar order engineering in 2H-stacked α-ln2Se3 ferroelectric. Science China Materials, 2022, 65, 1639-1645.	6.3	12
2	Interfacial engineering manipulation of magnetic anisotropy evolution via orbital reconstruction in low-dimensional manganite superlattices. Science China Materials, 2022, 65, 1902-1911.	6.3	3
3	Giant tunneling magnetoresistance and electroresistance in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>α</mml:mi><mml:mtext>â^'<td>าl:ratzext><</td><td>mad:msub></td></mml:mtext></mml:mrow></mml:math>	า l:ratz ext><	m ad :msub>
4	Al-2 Induces Urease Expression Through Downregulation of Orphan Response Regulator HP1021 in Helicobacter pylori. Frontiers in Medicine, 2022, 9, 790994.	2.6	3
5	Discovery of Robust Ferroelectricity in 2D Defective Semiconductor α‑Ga ₂ Se ₃ . Small, 2022, 18, e2105599.	10.0	21
6	Room-temperature spin-orbit torque switching in a manganite-based heterostructure. Physical Review B, 2022, 105, .	3.2	12
7	Thickness-dependent and strain-tunable magnetism in two-dimensional van der Waals VSe2. Nano Research, 2022, 15, 7597-7603.	10.4	19
8	Stable GeSe thin-film solar cells employing non-toxic SnO2 as buffer layer. Rare Metals, 2022, 41, 2992-2997.	7.1	8
9	Influence of shape, size and volume fraction of phase on the magnetic properties of Nd2Fe14B/α″-Fe16N2 core-shell nanostructures magnets. Journal of Magnetism and Magnetic Materials, 2022, , 169696.	2.3	0
10	Reversible control of magnetic and transport properties of NdNiO3– epitaxial films. Journal of Rare Earths, 2021, 39, 317-322.	4.8	9
11	Enhanced photoelectric performance in a CdO/ZnO/Ag heterostructure thin film photoanode. Vacuum, 2021, 185, 109951.	3.5	8
12	Spontaneous positive exchange bias effect in SrFeO3â^'x/SrCoO3â^'x epitaxial bilayer. Rare Metals, 2021, 40, 1858-1864.	7.1	6
13	Dimensionality control of magnetic coupling at interfaces of cuprate–manganite superlattices. Materials Horizons, 2021, 8, 2485-2493.	12.2	5
14	Layer-dependent ferroelectricity in 2H-stacked few-layer α-In ₂ Se ₃ . Materials Horizons, 2021, 8, 1472-1480.	12.2	37
15	The Role of a Dipeptide Transporter in the Virulence of Human Pathogen, Helicobacter pylori. Frontiers in Microbiology, 2021, 12, 633166.	3.5	7
16	Nanoscale Magnetization Reversal by Magnetoelectric Coupling Effect in Ga _{0.6} Fe _{1.4} O ₃ Multiferroic Thin Films. ACS Applied Materials & Interfaces, 2021, 13, 18194-18201.	8.0	8
17	Electric-Field Reversible Switching of the Exchange Spring and Exchange Bias Effect in SrCoO _{3–⟨i⟩x⟨ i⟩< sub> La_{0.7⟨ sub> Sr_{0.3⟨ sub> MnO_{3⟨ sub> Heterostructures. ACS Applied Materials & Amp; Interfaces, 2021, 13, 15774-15782.}}}}	8.0	6

Tunable topological states in layered magnetic materials of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Mn</mml:mi><mml:msub><mml:mis@b</mml:moi><mml:ngoi><mml:math xmlns:mml="http://"http://". Physical Review B, 2021, 103, .

#	Article	IF	CITATIONS
19	Room-temperature ferromagnetism enhancement in Fe-doped VSe2 nanosheets synthesized by a chemical method. Rare Metals, 2021, 40, 2501-2507.	7.1	8
20	Barrier-dependent electronic transport properties in two-dimensional MnBi2Te4-based van der Waals magnetic tunnel junctions. Applied Physics Letters, 2021, 118, .	3.3	11
21	Experimental observation of topological Hall effects in compensated ferrimagnet-heavy metal layered structures. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	8
22	Interlayer ferromagnetism and high-temperature quantum anomalous Hall effect in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mn</mml:mi><mml:msub><mml:< td=""><td>3.2 ni>Bi<td>13 nl:mi><mml:n< td=""></mml:n<></td></td></mml:<></mml:msub></mml:mrow></mml:math>	3.2 ni>Bi <td>13 nl:mi><mml:n< td=""></mml:n<></td>	13 nl:mi> <mml:n< td=""></mml:n<>
23	multilayers. Physical Review B, 2021, 103, . Selective Substrate-Orbital-Filtering Effect to Realize the Large-Gap Quantum Spin Hall Effect. Nano Letters, 2021, 21, 5828-5833.	9.1	6
24	Electric Field Control of the Magnetic Weyl Fermion in an Epitaxial SrRuO ₃ (111) Thin Film. Advanced Materials, 2021, 33, e2101316.	21.0	24
25	Field-free spin–orbit torque driven multi-state reversal in wedged Ta/MgO/CoFeB/MgO heterostructures. APL Materials, 2021, 9, 071108.	5.1	3
26	One-Pot Synthesis Enables Magnetic Coupled Cr ₂ Te ₃ Integrated Heterojunction Nanorods. Nano Letters, 2021, 21, 7684-7690.	9.1	8
27	NDV related exosomes enhance NDV replication through exporting NLRX1 mRNA. Veterinary Microbiology, 2021, 260, 109167.	1.9	8
28	Self-rectifying resistance switching memory based on a dynamic p–n junction. Nanotechnology, 2021, 32, 085203.	2.6	12
29	Manipulating the optical and electronic properties of MoO3 films through electric-field-induced ion migration. Journal of Materials Chemistry C, 2021, 10, 135-141.	5.5	3
30	Influence of Fe3O4 on metal–insulator transition temperature of La0.7Ca0.3MnO3 thin films. Journal of Materials Science, 2020, 55, 99-106.	3.7	0
31	Dramatically enhanced carrier mobility and Curie temperature in n-p codoped ZnO by proximity effect. Journal of Magnetism and Magnetic Materials, 2020, 496, 165966.	2.3	4
32	Evaluation of the safety and protection efficacy of an attenuated genotype vii newcastle disease virus strain as a candidate vaccine. Microbial Pathogenesis, 2020, 139, 103831.	2.9	4
33	A photoelectrochemical sensor for highly sensitive detection of glucose based on Au–NiO1– hybrid nanowires. Sensors and Actuators B: Chemical, 2020, 304, 127330.	7.8	22
34	d-electron-dependent transparent conducting oxide of V-doped ZnO thin films. Journal of Alloys and Compounds, 2020, 822, 153706.	5.5	12
35	Controllable and Stable Quantized Conductance States in a Pt/HfO <i></i> /i>/ITO Memristor. Advanced Electronic Materials, 2020, 6, 1901055.	5.1	31
36	The strain induced magnetic and anisotropic variations of LaCoO3 thin films. Journal of Magnetism and Magnetic Materials, 2020, 515, 167303.	2.3	13

#	Article	IF	Citations
37	lonic liquid gating control of magnetism of a Co film. Journal of Magnetism and Magnetic Materials, 2020, 515, 167261.	2.3	2
38	Prediction of monolayered ferromagnetic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CrMnI</mml:mi><mml:mn>6as an intrinsic high-temperature quantum anomalous Hall system. Physical Review B, 2020, 102, .</mml:mn></mml:msub></mml:math 	mml:138u2> <td>nmliansub></td>	nm lia nsub>
39	Strain-induced robust magnetic anisotropy and room temperature magnetoelectric coupling effect in epitaxial SmFeO3 film. Science China Materials, 2020, 63, 2062-2070.	6.3	8
40	The shape evolution process of two-dimensional CdSe nanocrystals altered by seed concentration. New Journal of Chemistry, 2020, 44, 10633-10637.	2.8	0
41	Excellent ferroelectricity of 50 nm-thick doped HfO2 thin films induced by annealing with a rapid-heating-temperature process. AIP Advances, 2020, 10 , .	1.3	8
42	Abundant valley-polarized states in two-dimensional ferromagnetic van der Waals heterostructures. Physical Review B, 2020, 101, .	3.2	42
43	Experimental observation of large tunneling anisotropic magnetoresistance in a magnetic tunnel junction without heavy metals. Applied Surface Science, 2020, 526, 146716.	6.1	0
44	Significant tunneling magnetoresistance and excellent spin filtering effect in Crl ₃ -based van der Waals magnetic tunnel junctions. Physical Chemistry Chemical Physics, 2020, 22, 14773-14780.	2.8	42
45	High-temperature and multichannel quantum anomalous Hall effect in pristine and alkali–metal-doped CrBr ₃ monolayers. Nanoscale, 2020, 12, 13964-13972.	5.6	16
46	Orbital reconstruction mediated giant vertical magnetization shift and insulator-to-metal transition in superlattices based on antiferromagnetic manganites. Physical Review B, 2020, 101, .	3.2	11
47	Nanometer-Thick Yttrium Iron Garnet Films with Perpendicular Anisotropy and Low Damping. Physical Review Applied, 2020, 14, .	3.8	50
48	Effect of the oxide layer on the interfacial Dyzaloshinskii-Moriya interaction in perpendicularly magnetized Pt/Co/SmOx and Pt/Co/AlOx heterostructures. Applied Surface Science, 2020, 513, 145768.	6.1	5
49	Solution Synthesis of Layered van der Waals (vdW) Ferromagnetic CrGeTe ₃ Nanosheets from a Non-vdW Cr ₂ Te ₃ Template. Journal of the American Chemical Society, 2020, 142, 4438-4444.	13.7	39
50	The influence of an ultra-high resistivity Ta underlayer on perpendicular magnetic anisotropy in Ta/Pt/Co/Pt heterostructures. RSC Advances, 2020, 10, 11219-11224.	3.6	10
51	Chimeric Newcastle Disease Virus-like Particles Containing DC-Binding Peptide-Fused Haemagglutinin Protect Chickens from Virulent Newcastle Disease Virus and H9N2 Avian Influenza Virus Challenge. Virologica Sinica, 2020, 35, 455-467.	3.0	15
52	Emergent ferromagnetism with tunable perpendicular magnetic anisotropy in short-periodic SrlrO3/SrRuO3 superlattices. Applied Physics Letters, 2020, 116, .	3.3	13
53	Polarity and charge redistribution induced emergent interfacial ferromagnetism in non-magnetic LaNiO3/SrMnO3 superlattices. Applied Physics Letters, 2020, 117, .	3.3	3
54	One-step electrodeposition of AuNi nanodendrite arrays as photoelectrochemical biosensors for glucose and hydrogen peroxide detection. Biosensors and Bioelectronics, 2019, 142, 111577.	10.1	31

#	Article	IF	CITATIONS
55	Possible realization of the high-temperature and multichannel quantum anomalous Hall effect in graphene/CrBr ₃ heterostructures under pressure. Physical Chemistry Chemical Physics, 2019, 21, 17087-17095.	2.8	23
56	Interfacial Ferromagnetic Coupling and Positive Spontaneous Exchange Bias in SrFeO _{3â€"<i>x</i>} /La _{0.7} Sr _{0.3} MnO ₃ Bilayers. ACS Applied Materials & Amp; Interfaces, 2019, 11, 26460-26466.	8.0	19
57	Homogeneous and inhomogeneous magnetic oxide semiconductors. Chinese Physics B, 2019, 28, 098506.	1.4	4
58	Intrinsic exchange bias effect in strain-engineered single antiferromagnetic LaMnO3 films. Science China Materials, 2019, 62, 1046-1052.	6. 3	8
59	Enhancement of perpendicular magnetic anisotropy and spin-orbit torque in Ta/Pt/Co/Ta multi-layered heterostructures through interfacial diffusion. Applied Physics Letters, 2019, 114, .	3.3	20
60	Resistive switching and its modulating ferromagnetism and magnetoresistance of a ZnO-Co/SiO2-Co film. Journal of Magnetism and Magnetic Materials, 2019, 489, 165445.	2.3	9
61	Memory Devices: An Electricâ€Fieldâ€Controlled Highâ€Speed Coexisting Multibit Memory and Boolean Logic Operations in Manganite Nanowire via Local Gating (Adv. Electron. Mater. 6/2019). Advanced Electronic Materials, 2019, 5, 1970029.	5.1	1
62	Topological phase transition induced by p _{x,y} and p _z band inversion in a honeycomb lattice. Nanoscale, 2019, 11, 13807-13814.	5 . 6	9
63	Engineering giant Rashba spin-orbit splitting in graphene via nâ^'p codoping. Physical Review B, 2019, 99, .	3.2	5
64	Solid-State Electrochemical Process and Performance Optimization of Memristive Materials and Devices. Chemistry, 2019, 1, 44-68.	2.2	4
65	An Electricâ€Fieldâ€Controlled Highâ€Speed Coexisting Multibit Memory and Boolean Logic Operations in Manganite Nanowire via Local Gating. Advanced Electronic Materials, 2019, 5, 1900020.	5.1	5
66	Perpendicular magnetic anisotropy in compressive strained La0.67Sr0.33MnO3 films. Journal of Materials Science, 2019, 54, 9017-9024.	3.7	20
67	Converting a two-dimensional ferromagnetic insulator into a high-temperature quantum anomalous Hall system by means of an appropriate surface modification. Physical Review B, 2019, 99, .	3.2	23
68	Studies on preparation and properties of low temperature phase of MnBi prepared by electrodeposition. Journal of Alloys and Compounds, 2019, 787, 1272-1279.	5 . 5	9
69	Redox gated polymer memristive processing memory unit. Nature Communications, 2019, 10, 736.	12.8	99
70	Detection of viral components in exosomes derived from NDV-infected DF-1 cells and their promoting ability in virus replication. Microbial Pathogenesis, 2019, 128, 414-422.	2.9	16
71	A genotype VII Newcastle disease virus-like particles confer full protection with reduced virus load and decreased virus shedding. Vaccine, 2019, 37, 444-451.	3.8	10
72	Inserting a nonmagnetic spacer layer in Nd2Fe14B/ \hat{l} ± \hat{a} € 3 -(FeCo)16N2 bilayers significantly improves their coercivity. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	3

#	Article	IF	CITATIONS
73	Newcastle disease virus-like particles containing the Brucella BCSP31 protein induce dendritic cell activation and protect mice against virulent Brucella challenge. Veterinary Microbiology, 2019, 229, 39-47.	1.9	5
74	Increased Curie Temperature Induced by Orbital Ordering in La0.67Sr0.33MnO3/BaTiO3 Superlattices. Nanoscale Research Letters, 2018, 13, 24.	5.7	4
75	Quantum oscillation in carrier transport in two-dimensional junctions. Nanoscale, 2018, 10, 7912-7917.	5.6	5
76	Electric field induced simultaneous change of transport and magnetic properties in multilayered NiO _x /Pt nanowires. Journal of Materials Chemistry C, 2018, 6, 1996-2003.	5.5	10
77	Novel magnetic g-C ₃ N ₄ /α-Fe ₂ O ₃ /Fe ₃ O ₄ composite for the very effective visible-light-Fenton degradation of Orange II. RSC Advances, 2018, 8, 5180-5188.	3.6	47
78	Observation of Superconductivity in the LaNiO ₃ Superlattice. ACS Applied Materials & Superlattice	8.0	22
79	The antiferromagnetic state in ultrathin LaNiO ₃ layer supported by long-range exchange bias in LaNiO ₃ /SrTiO ₃ /La _{0.7} Sr _{0.3} MnO ₃ superlattices. Journal of Materials Chemistry C, 2018, 6, 582-587.	5.5	7
80	Surface plasmon aided high sensitive non-enzymatic glucose sensor using Au/NiAu multilayered nanowire arrays. Biosensors and Bioelectronics, 2018, 111, 41-46.	10.1	53
81	Facile synthesis of carbon-rich g-C3N4 by copolymerization of urea and tetracyanoethylene for photocatalytic degradation of Orange II. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 61-69.	3.9	34
82	Improved plasmon-assisted photoelectric conversion efficiency across entire ultraviolet–visible region based on antenna-on zinc oxide/silver three-dimensional nanostructured films. Nano Research, 2018, 11, 520-529.	10.4	6
83	Room temperature ferromagnetism in metallic Ti _{1â^'x} V _x O ₂ thin films. RSC Advances, 2018, 8, 31382-31387.	3.6	3
84	Ferromagnetic Cr ₂ Te ₃ nanorods with ultrahigh coercivity. Nanoscale, 2018, 10, 11028-11033.	5.6	35
85	Quantum anomalous Hall effect and giant Rashba spin-orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms. Frontiers of Physics, 2018, 13, 1.	5.0	6
86	Dendritic cell-targeted recombinantLactobacilli induce DC activation and elicit specific immune responses against G57 genotype of avian H9N2 influenza virus infection. Veterinary Microbiology, 2018, 223, 9-20.	1.9	18
87	Angular dependence of the exchange bias for the bistable state. Journal of Magnetism and Magnetic Materials, 2017, 432, 342-350.	2.3	1
88	Robust Interfacial Exchange Bias and Metal–Insulator Transition Influenced by the LaNiO ₃ Layer Thickness in La _{0.7} Sr _{0.3} MnO ₃ /LaNiO ₃ Sub> Superlattices. ACS Applied Materials & Superlattices. 2017, 9, 3156-3160.	8.0	31
89	Room temperature insulating ferromagnetism induced by charge transfer in ultrathin (110) La0.7Sr0.3MnO3 films. Applied Physics Letters, 2017, 110, .	3.3	24
90	Newcastle disease virus-like particles induce DC maturation through TLR4/NF-κB pathway and facilitate DC migration by CCR7-CCL19/CCL21 axis. Veterinary Microbiology, 2017, 203, 158-166.	1.9	25

#	Article	IF	Citations
91	Highly flexible resistive switching memory based on amorphous-nanocrystalline hafnium oxide films. Nanoscale, 2017, 9, 7037-7046.	5.6	109
92	C, N and S codoped rutile TiO 2 nanorods for enhanced visible-light photocatalytic activity. Materials Letters, 2017, 195, 143-146.	2.6	26
93	Interfacial Spin Glass State and Exchange Bias in the Epitaxial La0.7Sr0.3MnO3/LaNiO3 Bilayer. Nanoscale Research Letters, 2017, 12, 330.	5.7	23
94	Identification and pathotypical analysis of a novel VIk sub-genotype Newcastle disease virus obtained from pigeon in China. Virus Research, 2017, 238, 1-7.	2.2	15
95	Electrically-controlled resistance and magnetoresistance in a SiO2-Co film. Materials Letters, 2017, 194, 227-230.	2.6	5
96	Realization of quantum anomalous Hall effect in graphene from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>n</mml:mi><mml:mo>â^'<td>no≫.2nml:r</td><td>m:lmml>وللاناm</td></mml:mo></mml:mrow></mml:math>	no ≫.2 nml:r	m:lmml> و للاناm
97	Enhanced stress-invariance of magnetization direction in magnetic thin films. Applied Physics Letters, 2017, 111, .	3.3	22
98	Nanochannels: A 1D Vanadium Dioxide Nanochannel Constructed via Electricâ€Fieldâ€Induced Ion Transport and its Superior Metal–Insulator Transition (Adv. Mater. 39/2017). Advanced Materials, 2017, 29, .	21.0	1
99	Exchange Bias Effect and Orbital Reconstruction in (001)-Oriented LaMnO ₃ /LaNiO ₃ Superlattices. ACS Applied Materials & Amp; Interfaces, 2017, 9, 39855-39862.	8.0	17
100	Room temperature quantum spin Hall insulator: Functionalized stanene on layered PbI2 substrate. Applied Physics Letters, 2017, 111, .	3.3	12
101	A 1D Vanadium Dioxide Nanochannel Constructed via Electricâ€Fieldâ€Induced Ion Transport and its Superior Metal–Insulator Transition. Advanced Materials, 2017, 29, 1702162.	21.0	79
102	The Exchange Bias of LaMnO3/LaNiO3 Superlattices Grown along Different Orientations. Scientific Reports, 2017, 7, 10557.	3.3	19
103	Spin Transport and Magnetism in Low-Dimensional Materials. Advances in Condensed Matter Physics, 2017, 2017, 1-2.	1.1	0
104	Magnetoresistance Effect in NiFe/BP/NiFe Vertical Spin Valve Devices. Advances in Condensed Matter Physics, 2017, 2017, 1-6.	1.1	11
105	Perpendicular Giant Magnetoresistance and Magnetic Properties of Co/Cu Nanowire Arrays Affected by Period Number and Copper Layer Thickness. Advances in Condensed Matter Physics, 2016, 2016, 1-9.	1.1	7
106	Composition dependence of magneto-optical response in Ag/Co dimer nanodot arrays. Journal of Magnetism and Magnetic Materials, 2016, 419, 553-558.	2.3	4
107	Structural and Electronic Properties of Interfaces in Graphene and Hexagonal Boron Nitride Lateral Heterostructures. Chemistry of Materials, 2016, 28, 5022-5028.	6.7	63
108	Strain-modulated ferromagnetism and band gap of Mn doped Bi2Se3. Scientific Reports, 2016, 6, 29161.	3.3	8

#	Article	IF	CITATIONS
109	The investigation of giant magnetic moment in ultrathin Fe3O4 films. APL Materials, 2016, 4, .	5.1	13
110	Enhanced photocatalytic properties of N–P co-doped TiO2 nanosheets with {001} facets. Rare Metals, 2016, 35, 940-947.	7.1	17
111	Tuning magnetic anisotropy of amorphous CoFeB film by depositing on convex flexible substrates. AIP Advances, 2016, 6, .	1.3	21
112	Magnetic properties and magnetic reversal process of exchange-coupled Nd2Fe14B/ $\hat{l}\pm\hat{a}$ €3-Fe16N2 bilayers. Journal of Applied Physics, 2016, 119, .	2.5	6
113	Magnetism and magnetoresistance from different origins in Co/ZnO:Al granular films. Physica B: Condensed Matter, 2016, 502, 16-20.	2.7	4
114	High-Temperature Quantum Anomalous Hall Effect in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>n</mml:mi><mml:mtext>a^'</mml:mtext><mml:mi>p</mml:mi><td>mr0%><td>ıml:math>Co</td></td></mml:mrow></mml:math>	mr 0% > <td>ıml:math>Co</td>	ıml:math>Co
115	Realization of resistive switching and magnetoresistance in ZnO/ZnO-Co composite materials. Scientific Reports, 2016, 6, 31934.	3.3	19
116	High-temperature quantum spin Hall insulator in compensated n-p codoped graphene. Journal Physics D: Applied Physics, 2016, 49, 075004.	2.8	7
117	CoPt Antidot Arrays Fabricated With Dry-Etching Using AAO Templates. IEEE Transactions on Magnetics, 2016, 52, 1-5.	2.1	5
118	Large range localized surface plasmon resonance of Ag nanoparticles films dependent of surface morphology. Applied Surface Science, 2016, 367, 563-568.	6.1	25
119	Effect of nitrogen and cobalt additions on surface morphology and magnetic properties of Fe thin films. Journal of Alloys and Compounds, 2016, 662, 541-545.	5. 5	10
120	Structural, mechanical and electronic properties of in-plane $1T/2H$ phase interface of MoS2 heterostructures. AIP Advances, $2015,5,.$	1.3	37
121	Magnetic Coupling of Dissimilar ZnO–Co Granular Films Through a ZnO Spacer. Spin, 2015, 05, 1540008.	1.3	2
122	Engineering optical properties of metal/porous anodic alumina films for refractometric sensing. Applied Surface Science, 2015, 355, 139-144.	6.1	13
123	Realizing chemical codoping in TiO ₂ . Physical Chemistry Chemical Physics, 2015, 17, 17989-17994.	2.8	14
124	Comparison of Magnetism and Transport Properties in Fe/X (X = C, Si, Ge) Films. IEEE Transactions on Magnetics, 2015, 51 , $1-4$.	2.1	0
125	Long-range and strong ferromagnetic graphene by compensated n–p codoping and π–π stacking. Carbon, 2015, 95, 65-71.	10.3	11
126	The Effect of Fourfold Anisotropy on the Angular Dependence of the Exchange Bias. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	2

#	Article	IF	Citations
127	The angular dependence of the exchange bias under the planar domain wall model. AIP Advances, 2015, 5, 057146.	1.3	0
128	Preparation and analysis of anodic aluminum oxide films with continuously tunable interpore distances. Applied Surface Science, 2015, 328, 459-465.	6.1	30
129	Long-range ferromagnetic graphene via compensated Fe/NO2 co-doping. Applied Surface Science, 2014, 305, 768-773.	6.1	13
130	Resistivity dependence of magnetoresistance in Co/ZnO films. Nanoscale Research Letters, 2014, 9, 6.	5.7	17
131	Synergistic catalysis of Au–Cu/TiO ₂ -NB nanopaper in aerobic oxidation of benzyl alcohol. Journal of Materials Chemistry A, 2014, 2, 16292-16298.	10.3	37
132	The Dependence of Magnetic Properties on Diameters of One-Dimensional Nickel Nanostructures. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	4
133	Effect of ethanol on the fabrication of porous anodic alumina in sulfuric acid. Surface and Coatings Technology, 2014, 254, 398-401.	4.8	24
134	The Morphology and Magnetic Properties of FePt Antidot Arrays on Porous Anodic Alumina Templates. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	4
135	Structural and magnetotransport properties of ultrathin Co/ZnO and Co/ZnAlO films. Journal of Applied Physics, 2014, 115, 233908.	2.5	0
136	Diluted magnetic oxides. Science China: Physics, Mechanics and Astronomy, 2013, 56, 111-123.	5.1	10
137	Research on structural optimization of the flexible magnetoelectric torque unimorph device. , 2013, , .		0
138	Diluted ferromagnetic graphene by compensated n–p codoping. Carbon, 2013, 61, 609-615.	10.3	28
139	Enhancement of the metal-insulator transition temperature in La0.7Ca0.3MnO3 film by magnetic nanodots. Applied Physics Letters, 2013, 102, .	3.3	3
140	Enhanced Room Temperature Magnetoresistance and Spin Injection from Metallic Cobalt in Co/ZnO and Co/ZnAlO Films. ACS Applied Materials & Samp; Interfaces, 2013, 5, 3607-3613.	8.0	34
141	Tunable magnetic and transport properties of $\langle i \rangle p \langle i \rangle$ -type ZnMnO films with $\langle i \rangle n \langle i \rangle$ -type Ga, Cr, and Fe codopants. Applied Physics Letters, 2013, 102, .	3.3	16
142	Contrasting behavior of the structural and magnetic properties in Mn- and Fe-doped In2O3 films. APL Materials, $2013,1,$	5.1	9
143	Facile synthesis of uniform h-BN nanocrystals and their application as a catalyst support towards the selective oxidation of benzyl alcohol. RSC Advances, 2012, 2, 10689.	3.6	20
144	Different magnetic origins of (Mn, Fe)-codoped ZnO powders and thin films. Materials Research Bulletin, 2012, 47, 3344-3347.	5.2	17

#	Article	IF	CITATIONS
145	Design and micromagnetic simulation of the L10-FePt/Fe multilayer graded film. Journal of Applied Physics, 2012, 111, 073910.	2.5	23
146	Ferromagnetism in noncompensated (Mn,Ga)-codoped ZnO films. Physica B: Condensed Matter, 2012, 407, 2215-2218.	2.7	5
147	Structural and magnetotransport properties in Co/nonmagnetic films. Materials Letters, 2011, 65, 2982-2984.	2.6	16
148	First-Principles Study of Magnetic Exchange Interactions of \$3{m -D}\$ Transition Mental Adatoms on Graphene. IEEE Transactions on Magnetics, 2011, 47, 2425-2428.	2.1	1
149	In <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> O <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow< td=""><td>3.2</td><td>41</td></mml:mrow<></mml:msub></mml:math>	3.2	41
150	/> <mml:mn>3 and Co-doped ZnO. Physical Review B, 2011, 84, . Room temperature ferromagnetism in metallic and insulating (ln1â°'<i>x</i>Fe<i>x</i>)2O3 thin films. Journal of Applied Physics, 2011, 109, .</mml:mn>	2.5	40
151	Defects Inducing Ferromagnetism in Carbon-Doped ZnO Films. IEEE Transactions on Magnetics, 2010, 46, 1382-1384.	2.1	23
152	Investigation of structure and magnetoresistance in Co/ZnO films. Journal of Applied Physics, 2010, 108, .	2.5	22
153	Role of carrier and spin in tuning ferromagnetism in Mn and Cr-doped In2O3 thin films. Applied Physics Letters, 2010, 96, .	3.3	42
154	Magnetic and transport properties of n-type Fe-doped In2O3 ferromagnetic thin films. Applied Physics Letters, 2009, 94, .	3.3	56
155	Role of donor defects in enhancing ferromagnetism of Cu-doped ZnO films. Journal of Applied Physics, 2009, 105, 103914.	2.5	61
156	FeAu/FePt exchange-spring media fabricated by magnetron sputtering and postannealing. Applied Physics Letters, 2009, 95, 022516.	3.3	46
157	Effect of Cu additive on the structure and magnetic properties of (CoPt)1â^'x Cu x films. Rare Metals, 2009, 28, 14-18.	7.1	7
158	Microstructures and magnetic properties of [SiO2/FePt]5/Ag thin films. Central South University, 2008, 15, 11-14.	0.5	3
159	The dopant concentration and annealing temperature dependence of ferromagnetism in Co-doped ZnO thin films. Applied Surface Science, 2008, 254, 4956-4960.	6.1	27
160	Aerobic Oxidation of <scp>d</scp> -Glucose on Support-Free Nanoporous Gold. Journal of Physical Chemistry C, 2008, 112, 9673-9678.	3.1	159
161	Magnetoresistance in Co/ZnO Films. IEEE Transactions on Magnetics, 2008, 44, 2684-2687.	2.1	13
162	Monte Carlo simulation of growth of binary bcc structured layers. Physical Review B, 2008, 78, .	3.2	4

#	Article	IF	CITATION
163	Enhancement of magnetic moment of Co-doped ZnO films by postannealing in vacuum. Journal of Applied Physics, 2008, 103, .	2.5	30
164	The effect of Ag layer on the structural and magnetic properties of (001)-oriented [C/CoPt/Ag]5 films. Thin Solid Films, 2007, 515, 3936-3940.	1.8	3
165	Nearly perfect (001)-oriented Ag/[CoPt/C]5/Ag composite films deposited on glass substrates. Thin Solid Films, 2007, 515, 5471-5475.	1.8	18
166	Texture development and magnetic properties of [ZrO 2 /CoPt] n /Ag nanocomposite films. Applied Surface Science, 2007, 253, 3382-3386.	6.1	3
167	Magnetron sputtering deposition of [FePt/Ag]n multilayers for perpendicular recording. Rare Metals, 2006, 25, 47-50.	7.1	13
168	A study of the optimization of parameters for pulsed laser deposition using Monte Carlo simulation. Thin Solid Films, 2006, 515, 2754-2759.	1.8	11
169	Structure and magnetic properties of FePt and FePt/Ag thin films deposited by magnetron sputtering. Thin Solid Films, 2005, 472, 222-226.	1.8	39
170	A high (001)-oriented CoPt/Ag film deposited on glass substrate. Journal of Magnetism and Magnetic Materials, 2005, 295, 106-109.	2.3	27
171	Structure and magnetic properties of [FePt/Ag]10 multilayer films. Science Bulletin, 2004, 49, 2455-2458.	1.7	0
172	Microstructure and magnetic properties of [FePt/AlN]n multilayers deposited by RF magnetron sputtering. Physica B: Condensed Matter, 2004, 352, 48-52.	2.7	3
173	Performance improvement of Sb2Se3 thin-film solar cells through ultraviolet ozone treatment. Rare Metals, 0, , $1.$	7.1	3
174	Effect of Cr, N co-doping on the structural and optical properties of ZnO thin films deposited by	2.2	0