Qiyuan He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1239056/publications.pdf

Version: 2024-02-01

82 papers 20,893 citations

36271 51 h-index

81 g-index

84 all docs

84 docs citations

times ranked

84

27864 citing authors

#	Article	IF	CITATIONS
1	Palladium-Catalyzed Site-Selective $[5+1]$ Annulation of Aromatic Amides with Alkenes: Acceleration of \hat{I}^2 -Hydride Elimination by Maleic Anhydride from Palladacycle. ACS Catalysis, 2022, 12, 1595-1600.	5.5	5
2	Reaction Path Determination of Rhodium(I)-Catalyzed C–H Alkylation of <i>N</i> -8-Aminoquinolinyl Aromatic Amides with Maleimides. Journal of Organic Chemistry, 2022, 87, 737-743.	1.7	5
3	Palladiumâ€Catalyzed Siteâ€Selective [3+2] Annulation via Benzylic and meta Câ^'H Bond Activation. Angewandte Chemie, 2021, 133, 5249-5252.	1.6	7
4	Palladiumâ€Catalyzed Siteâ€Selective [3+2] Annulation via Benzylic and <i>meta</i> Câ^'H Bond Activation. Angewandte Chemie - International Edition, 2021, 60, 5189-5192.	7.2	37
5	Emerging elemental two-dimensional materials for energy applications. Journal of Materials Chemistry A, 2021, 9, 18793-18817.	5. 2	30
6	Metastable 1T′-phase group VIB transition metal dichalcogenide crystals. Nature Materials, 2021, 20, 1113-1120.	13.3	119
7	Engineering grain boundaries at theÂ2D limit for theÂhydrogen evolution reaction. Nature Communications, 2020, 11, 57.	5.8	153
8	<i>In-Situ</i> Probing of Crystal-Phase-Dependent Photocatalytic Activities of Au Nanostructures by Surface-Enhanced Raman Spectroscopy., 2020, 2, 409-414.		22
9	Phase engineering of nanomaterials. Nature Reviews Chemistry, 2020, 4, 243-256.	13.8	438
10	Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. Nature Electronics, 2020, 3, 59-69.	13.1	150
11	On-chip electrocatalytic microdevice: an emerging platform for expanding the insight into electrochemical processes. Chemical Society Reviews, 2020, 49, 2916-2936.	18.7	68
12	Self-gating in semiconductor electrocatalysis. Nature Materials, 2019, 18, 1098-1104.	13.3	167
13	The Pd-catalyzed C–H alkylation of <i>ortho</i> methyl-substituted aromatic amides with maleimide occurs preferentially at the <i>ortho</i> methyl C–H bond over the <i>ortho</i> C–H bond. Chemical Communications, 2019, 55, 9983-9986.	2.2	34
14	Unusual 4H-phase twinned noble metal nanokites. Nature Communications, 2019, 10, 2881.	5.8	25
15	Quest for p-Type Two-Dimensional Semiconductors. ACS Nano, 2019, 13, 12294-12300.	7.3	72
16	In Situ Probing Molecular Intercalation in Two-Dimensional Layered Semiconductors. Nano Letters, 2019, 19, 6819-6826.	4.5	72
17	A field-effect approach to directly profiling the localized states in monolayer MoS2. Science Bulletin, 2019, 64, 1049-1055.	4.3	5
18	Strong Charge Transfer at 2H–1T Phase Boundary of MoS ₂ for Superb Highâ€Performance Energy Storage. Small, 2019, 15, e1900131.	5. 2	53

#	Article	IF	Citations
19	MOFâ€Based Hierarchical Structures for Solarâ€Thermal Clean Water Production. Advanced Materials, 2019, 31, e1808249.	11.1	233
20	Inâ€Plane Anisotropic Properties of 1T′â€MoS ₂ Layers. Advanced Materials, 2019, 31, e1807764.	11.1	55
21	Synthesis of PdM (M = Zn, Cd, ZnCd) Nanosheets with an Unconventional Face-Centered Tetragonal Phase as Highly Efficient Electrocatalysts for Ethanol Oxidation. ACS Nano, 2019, 13, 14329-14336.	7.3	133
22	Nanoscale patterning hots up. Nature Electronics, 2019, 2, 13-14.	13.1	3
23	Quantitative Surface Plasmon Interferometry via Upconversion Photoluminescence Mapping. Research, 2019, 2019, 8304824.	2.8	2
24	Monolayer atomic crystal molecular superlattices. Nature, 2018, 555, 231-236.	13.7	323
25	Transforming Monolayer Transition-Metal Dichalcogenide Nanosheets into One-Dimensional Nanoscrolls with High Photosensitivity. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13011-13018.	4.0	45
26	High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nature Chemistry, 2018, 10, 638-643.	6.6	757
27	A Synthesis of 3,4-Dihydroisoquinolin-1(2H)-one via the Rhodium-Catalyzed Alkylation of Aromatic Amides with N-Vinylphthalimide. Journal of Organic Chemistry, 2018, 83, 13587-13594.	1.7	29
28	2D materials-wrapped microparticles. Nature Materials, 2018, 17, 956-957.	13.3	1
29	Realization of vertical metal semiconductor heterostructures via solution phase epitaxy. Nature Communications, 2018, 9, 3611.	5.8	49
30	Designing an Efficient Multimode Environmental Sensor Based on Graphene–Silicon Heterojunction. Advanced Materials Technologies, 2017, 2, 1600262.	3.0	55
31	Recent Advances in Cantilever-Free Scanning Probe Lithography: High-Throughput, Space-Confined Synthesis of Nanostructures and Beyond. ACS Nano, 2017, 11, 4381-4386.	7.3	21
32	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	23.0	3,940
33	Solventâ€Based Softâ€Patterning of Graphene Lateral Heterostructures for Broadband Highâ€Speed Metal–Semiconductor–Metal Photodetectors. Advanced Materials Technologies, 2017, 2, 1600241.	3.0	53
34	Vertical Charge Transport and Negative Transconductance in Multilayer Molybdenum Disulfides. Nano Letters, 2017, 17, 5495-5501.	4.5	42
35	Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chemical Society Reviews, 2017, 46, 6872-6904.	18.7	316
36	Rh(I)-Catalyzed Alkylation of <i>ortho</i> -C–H Bonds in Aromatic Amides with Maleimides. Organic Letters, 2017, 19, 4544-4547.	2.4	79

#	Article	IF	CITATIONS
37	Highly Sensitive Chemical Detection with Tunable Sensitivity and Selectivity from Ultrathin Platinum Nanowires. Small, 2017, 13, 1602969.	5.2	19
38	The Effect of Thermal Annealing on Charge Transport in Organolead Halide Perovskite Microplate Fieldâ€Effect Transistors. Advanced Materials, 2017, 29, 1601959.	11.1	91
39	Pushing the Performance Limit of Sub-100 nm Molybdenum Disulfide Transistors. Nano Letters, 2016, 16, 6337-6342.	4.5	117
40	Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template. Science Advances, 2016, 2, e1600993.	4.7	52
41	Highâ€Currentâ€Density Verticalâ€Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures. Advanced Materials, 2016, 28, 4120-4125.	11.1	43
42	Plasmonic/Nonlinear Optical Material Core/Shell Nanorods as Nanoscale Plasmon Modulators and Optical Voltage Sensors. Angewandte Chemie - International Edition, 2016, 55, 583-587.	7.2	21
43	van der Waals Heterojunction Devices Based on Organohalide Perovskites and Two-Dimensional Materials. Nano Letters, 2016, 16, 367-373.	4.5	185
44	Toward Barrier Free Contact to Molybdenum Disulfide Using Graphene Electrodes. Nano Letters, 2015, 15, 3030-3034.	4.5	362
45	Cosolvent Approach for Solution-Processable Electronic Thin Films. ACS Nano, 2015, 9, 4398-4405.	7. 3	63
46	Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Science Advances, 2015, 1, e1500613.	4.7	265
47	An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces. Nature Communications, 2015, 6, 7867.	5.8	64
48	TaS2 nanosheet-based room-temperature dosage meter for nitric oxide. APL Materials, 2014, 2, .	2.2	16
49	Grapheneâ€Based Materials for Solar Cell Applications. Advanced Energy Materials, 2014, 4, 1300574.	10.2	398
50	Solution Processable Colloidal Nanoplates as Building Blocks for High-Performance Electronic Thin Films on Flexible Substrates. Nano Letters, 2014, 14, 6547-6553.	4.5	69
51	The mechanism of graphene oxide as a growth template for complete reduced graphene oxide coverage on an SiO2substrate. Journal of Materials Chemistry C, 2014, 2, 109-114.	2.7	16
52	Graphene Oxide Architectures Prepared by Molecular Combing on Hydrophilicâ€Hydrophobic Micropatterns. Small, 2014, 10, 2239-2244.	5.2	23
53	Memory Devices Using a Mixture of MoS ₂ and Graphene Oxide as the Active Layer. Small, 2013, 9, 727-731.	5.2	144
54	Mechanical Exfoliation and Characterization of Single―and Few‣ayer Nanosheets of WSe ₂ , TaS ₂ , and TaSe ₂ . Small, 2013, 9, 1974-1981.	5.2	544

#	Article	IF	Citations
55	Grapheneâ∈Based Electrochemical Sensors. Small, 2013, 9, 1160-1172.	5.2	526
56	The extended growth of graphene oxide flakes using ethanol CVD. Nanoscale, 2013, 5, 2945.	2.8	31
57	Graphene Oxide Scrolls on Hydrophobic Substrates Fabricated by Molecular Combing and Their Application in Gas Sensing. Small, 2013, 9, 382-386.	5.2	57
58	Surface Modification of Smooth Poly(<scp>l</scp> -lactic acid) Films for Gelatin Immobilization. ACS Applied Materials & Samp; Interfaces, 2012, 4, 687-693.	4.0	38
59	Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors. Nanoscale, 2012, 4, 293-297.	2.8	185
60	Synthesis of Fe3O4 and Pt nanoparticles on reduced graphene oxide and their use as a recyclable catalyst. Nanoscale, 2012, 4, 2478.	2.8	131
61	Fabrication of Single―and Multilayer MoS ₂ Filmâ€Based Fieldâ€Effect Transistors for Sensing NO at Room Temperature. Small, 2012, 8, 63-67.	5.2	1,346
62	Optical Identification of Single―and Few‣ayer MoS ₂ Sheets. Small, 2012, 8, 682-686.	5.2	290
63	Fabrication of Flexible MoS ₂ Thinâ€Film Transistor Arrays for Practical Gasâ€Sensing Applications. Small, 2012, 8, 2994-2999.	5.2	817
64	Electrochemically Reduced Singleâ€Layer MoS ₂ Nanosheets: Characterization, Properties, and Sensing Applications. Small, 2012, 8, 2264-2270.	5.2	373
65	Graphene-based electronic sensors. Chemical Science, 2012, 3, 1764.	3.7	663
66	Electrochemical deposition of Cl-doped n-type Cu ₂ 0 on reduced graphene oxide electrodes. Journal of Materials Chemistry, 2011, 21, 3467-3470.	6.7	91
67	Nucleation Mechanism of Electrochemical Deposition of Cu on Reduced Graphene Oxide Electrodes. Journal of Physical Chemistry C, 2011, 115, 15973-15979.	1.5	50
68	Electrical Detection of Metal lons Using Field-Effect Transistors Based on Micropatterned Reduced Graphene Oxide Films. ACS Nano, 2011, 5, 1990-1994.	7.3	279
69	Single-layer graphene oxide sheet: a novel substrate for dip-pen nanolithography. Chemical Communications, 2011, 47, 10070.	2.2	16
70	Transparent, Flexible, All-Reduced Graphene Oxide Thin Film Transistors. ACS Nano, 2011, 5, 5038-5044.	7.3	305
71	Nanoscaleâ€Controlled Enzymatic Degradation of Poly(<scp>L</scp> â€lactic acid) Films Using Dipâ€Pen Nanolithography. Small, 2011, 7, 226-229.	5 . 2	24
72	Grapheneâ€Based Materials: Synthesis, Characterization, Properties, and Applications. Small, 2011, 7, 1876-1902.	5.2	2,239

#	Article	IF	CITATIONS
73	Graphene Oxide as a Carbon Source for Controlled Growth of Carbon Nanowires. Small, 2011, 7, 1199-1202.	5.2	75
74	Singleâ€Layer Semiconducting Nanosheets: Highâ€Yield Preparation and Device Fabrication. Angewandte Chemie - International Edition, 2011, 50, 11093-11097.	7.2	1,517
75	Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin. Chemical Communications, 2010, 46, 6974.	2.2	124
76	Generation of Dual Patterns of Metal Oxide Nanomaterials Based on Seed-Mediated Selective Growth. Langmuir, 2010, 26, 4616-4619.	1.6	12
77	Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications. ACS Nano, 2010, 4, 3201-3208.	7.3	571
78	Electrochemical Deposition of Semiconductor Oxides on Reduced Graphene Oxide-Based Flexible, Transparent, and Conductive Electrodes. Journal of Physical Chemistry C, 2010, 114, 11816-11821.	1.5	159
79	Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. ACS Nano, 2010, 4, 5263-5268.	7.3	566
80	Interfacing Live Cells with Nanocarbon Substrates. Langmuir, 2010, 26, 2244-2247.	1.6	301
81	Surface immobilized cholera toxin B subunit (CTB) facilitates vesicle docking, trafficking and exocytosis. Integrative Biology (United Kingdom), 2010, 2, 250.	0.6	12
82	Fabrication of Bio- and Nanopatterns by Dip Pen Nanolithography. , 2010, , 187-204.		0