
Stefan Schneiderbauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1238881/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Framing vulnerability, risk and societal responses: the MOVE framework. Natural Hazards, 2013, 67, 193-211.	3.4	678
2	Multi-risk assessment in mountain regions: A review of modelling approaches for climate change adaptation. Journal of Environmental Management, 2019, 232, 759-771.	7.8	102
3	Landslide mapping and monitoring by using radar and optical remote sensing: Examples from the EC-FP7 project SAFER. Remote Sensing Applications: Society and Environment, 2016, 4, 92-108.	1.5	95
4	Vulnerability assessment within climate change and natural hazard contexts: revealing gaps and synergies through coastal applications. Sustainability Science, 2010, 5, 159-170.	4.9	88
5	Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (south-eastern Alps,) Tj ETQq1	1 0.784314 2.6	rgBT /Overloo
6	Correlation does not imply geomorphic causation in data-driven landslide susceptibility modelling – Benefits of exploring landslide data collection effects. Science of the Total Environment, 2021, 776, 145935.	8.0	60
7	Conceptualizing community resilience to natural hazards – the emBRACE framework. Natural Hazards and Earth System Sciences, 2017, 17, 2321-2333.	3.6	52
8	Risk perception of climate change and natural hazards in global mountain regions: A critical review. Science of the Total Environment, 2021, 784, 146957.	8.0	43
9	Assessing adaptive capacity within regional climate change vulnerability studies—an Alpine example. Natural Hazards, 2013, 67, 1059-1073.	3.4	37
10	Critical Data Source; Tool or Even Infrastructure? Challenges of Geographic Information Systems and Remote Sensing for Disaster Risk Governance. ISPRS International Journal of Geo-Information, 2015, 4, 1848-1869.	2.9	35
11	Multi-Temporal X-Band Radar Interferometry Using Corner Reflectors: Application and Validation at the Corvara Landslide (Dolomites, Italy). Remote Sensing, 2017, 9, 739.	4.0	27
12	The vulnerability sourcebook and climate impact chains – a standardised framework for a climate vulnerability and risk assessment. International Journal of Climate Change Strategies and Management, 2021, 13, 35-59.	2.9	27
13	A consensus based vulnerability assessment to climate change in Germany. International Journal of Climate Change Strategies and Management, 2015, 7, 306-326.	2.9	20
14	Spatial-Explicit Climate Change Vulnerability Assessments Based on Impact Chains. Findings from a Case Study in Burundi. Sustainability, 2020, 12, 6354.	3.2	20
15	When do rock glacier fronts fail? Insights from two case studies in South Tyrol (Italian Alps). Earth Surface Processes and Landforms, 2021, 46, 1311-1327.	2.5	18
16	An inventory-driven rock glacier status model (intact vs. relict) for South Tyrol, Eastern Italian Alps. Geomorphology, 2020, 350, 106887.	2.6	17
17	Spatio-temporal population modelling as improved exposure information for risk assessments tested in the Autonomous Province of Bolzano. International Journal of Disaster Risk Reduction, 2018, 27, 470-479.	3.9	13
18	State-of-the-art on ecosystem-based solutions for disaster risk reduction: The case of gravity-driven natural hazards in the Alpine region. International Journal of Disaster Risk Reduction, 2020, 51, 101929.	3.9	12

#	Article	IF	CITATIONS
19	Theoretical and Conceptual Framework for the Assessment of Vulnerability to Natural Hazards and Climate Change in Europe11This chapter is based on a paper published in Natural Hazards dealing with the MOVE framework; see in detail Birkmann et al., 2013 , 2014, , 1-19.		8
20	Population Density Estimations for Disaster Management: Case Study Rural Zimbabwe. , 2005, , 901-921.		6
21	Vulnerability to Heat Waves, Floods, and Landslides in Mountainous Terrain. , 2014, , 179-201.		6
22	Climate Impact Chains—A Conceptual Modelling Approach for Climate Risk Assessment in the Context of Adaptation Planning. Springer Climate, 2022, , 217-224.	0.6	6
23	Scrutinising Multidimensional Challenges in the Maloti-Drakensberg (Lesotho/South Africa). Sustainability, 2021, 13, 8511.	3.2	4
24	Stochastic system dynamics modelling for climate change water scarcity assessment of a reservoir in the Italian Alps. Natural Hazards and Earth System Sciences, 2021, 21, 3519-3537.	3.6	4
25	Towards a sediment transfer capacity index of rock glaciers: Examples from two catchments in South Tyrol, (Eastern Italian Alps). Catena, 2022, 216, 106329.	5.0	3
26	Assessment of Rockslide Dam Scenarios at Catchment Scale in the Context of Cascading Hazards. , 2017, , 685-692.		2
27	The Global Mountain Safeguard Research (GLOMOS) Programme: Linking Academia and the United Nations System for Transformative Resilience in Mountain Regions. Mountain Research and Development, 2020, 40, .	1.0	2
28	What "on―the world is going on?. Natural Hazards, 2013, 68, 199-200.	3.4	1
29	Beyond the Expected—Residual Risk and Cases of Overload in the Context of Managing Alpine Natural Hazards. International Journal of Disaster Risk Science, 2021, 12, 205-219.	2.9	1
30	A Statistical Exploratory Analysis of Inventoried Slide-Type Movements for South Tyrol (Italy). ICL Contribution To Landslide Disaster Risk Reduction, 2021, , 305-311.	0.3	1
31	Exploring constraints and benefits of PSI technique for landslide detection and monitoring from space. , 2011, , .		0
32	Integrated assessment for vulnerability to climate change in Germany - a brief overview of methodology and results. GI_Forum, 2016, 4, 157-166.	0.2	0