
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1238772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seizure prevalence in neurodegenerative diseases—a study of autopsy proven cases. European Journal of Neurology, 2022, 29, 12-18.	1.7	6
2	One-year outcome of brain injured patients undergoing early neurological rehabilitation: a prospective observational study. BMC Neurology, 2022, 22, 30.	0.8	8
3	Innovative therapeutic concepts of progressive multifocal leukoencephalopathy. Journal of Neurology, 2022, 269, 2403-2413.	1.8	12
4	Neuropsychiatric Symptoms in Parkinson's Disease Patients Are Associated with Reduced Health-Related Quality of Life and Increased Caregiver Burden. Brain Sciences, 2022, 12, 89.	1.1	17
5	Neurological management and work-up of neurotoxicity associated with CAR T cell therapy. Neurological Research and Practice, 2022, 4, 1.	1.0	9
6	Impact of Partial Volume Correction on [18F]GE-180 PET Quantification in Subcortical Brain Regions of Patients with Corticobasal Syndrome. Brain Sciences, 2022, 12, 204.	1.1	2
7	Longitudinal changes of early motor and cognitive symptoms in progressive supranuclear palsy: the OxQUIP study. BMJ Neurology Open, 2022, 4, e000214.	0.7	5
8	Safety, Pharmacokinetics, and Pharmacodynamics of Oral Venglustat in Patients with Parkinson's Disease and a GBA Mutation: Results from Part 1 of the Randomized, Double-Blinded, Placebo-Controlled MOVES-PD Trial. Journal of Parkinson's Disease, 2022, 12, 557-570.	1.5	34
9	Tau deposition patterns are associated with functional connectivity in primary tauopathies. Nature Communications, 2022, 13, 1362.	5.8	34
10	Reduction in Volume of Nucleus Basalis of Meynert Is Specific to Parkinson's Disease and Progressive Supranuclear Palsy but Not to Multiple System Atrophy. Frontiers in Aging Neuroscience, 2022, 14, 851788.	1.7	7
11	The Movement Disorder Society Criteria for the Diagnosis of Multiple System Atrophy. Movement Disorders, 2022, 37, 1131-1148.	2.2	222
12	Transcriptome and Proteome Analysis in LUHMES Cells Overexpressing Alpha-Synuclein. Frontiers in Neurology, 2022, 13, 787059.	1.1	9
13	Binding Stability of Antibody—α-Synuclein Complexes Predicts the Protective Efficacy of Anti-α-synuclein Antibodies. Molecular Neurobiology, 2022, 59, 3980-3995.	1.9	3
14	A new paradigm for diagnosis of neurodegenerative diseases: peripheral exosomes of brain origin. Translational Neurodegeneration, 2022, 11, 28.	3.6	37
15	Inferring the sequence of brain volume changes in progressive supranuclear palsy using MRI. Brain Communications, 2022, 4, .	1.5	1
16	Comparative analysis of machine learning algorithms for multi-syndrome classification of neurodegenerative syndromes. Alzheimer's Research and Therapy, 2022, 14, 62.	3.0	9
17	GBA-associated PD: chances and obstacles for targeted treatment strategies. Journal of Neural Transmission, 2022, 129, 1219-1233.	1.4	22
18	In Vivo Assessment of Neuroinflammation in <scp>4â€Repeat</scp> Tauopathies. Movement Disorders, 2021, 36, 883-894.	2.2	37

#	Article	IF	CITATIONS
19	Genetic determinants of survival in progressive supranuclear palsy: a genome-wide association study. Lancet Neurology, The, 2021, 20, 107-116.	4.9	62
20	The influence of the CRS-R score on functional outcome in patients with severe brain injury receiving early rehabilitation. BMC Neurology, 2021, 21, 44.	0.8	13
21	The "zig-zag―sign in progressive supranuclear palsy – The slowness of vertical saccades was the clue. Parkinsonism and Related Disorders, 2021, 83, 6-7.	1.1	Ο
22	Auditory Stimulation Modulates Resting-State Functional Connectivity in Unresponsive Wakefulness Syndrome Patients. Frontiers in Neuroscience, 2021, 15, 554194.	1.4	7
23	One Year Trajectory of Caregiver Burden in Parkinson's Disease and Analysis of Gender-Specific Aspects. Brain Sciences, 2021, 11, 295.	1.1	19
24	Outcomes of <scp>SARS oVâ€2</scp> Infections in Patients with Neurodegenerative Diseases in the <scp>LEOSS</scp> Cohort. Movement Disorders, 2021, 36, 791-793.	2.2	13
25	Safety and efficacy of tilavonemab in progressive supranuclear palsy: a phase 2, randomised, placebo-controlled trial. Lancet Neurology, The, 2021, 20, 182-192.	4.9	74
26	First symptom guides diagnosis and prognosis in neurodegenerative diseases—a retrospective study of autopsy proven cases. European Journal of Neurology, 2021, 28, 1801-1811.	1.7	11
27	Genotype–Phenotype Relations for the Atypical Parkinsonism Genes: MDSGene Systematic Review. Movement Disorders, 2021, 36, 1499-1510.	2.2	22
28	Evidence for pathogenicity of variant ATM Val1729Leu in a family with ataxia telangiectasia. Neurogenetics, 2021, 22, 143-147.	0.7	2
29	Comprehensive miRNome-Wide Profiling in a Neuronal Cell Model of Synucleinopathy Implies Involvement of Cell Cycle Genes. Frontiers in Cell and Developmental Biology, 2021, 9, 561086.	1.8	9
30	Clinical Features Observed in General Practice Associated With the Subsequent Diagnosis of Progressive Supranuclear Palsy. Frontiers in Neurology, 2021, 12, 637176.	1.1	9
31	Prothrombotic immune thrombocytopenia after COVID-19 vaccination. Blood, 2021, 138, 350-353.	0.6	145
32	DescribePSP and ProPSP: German Multicenter Networks for Standardized Prospective Collection of Clinical Data, Imaging Data, and Biomaterials of Patients With Progressive Supranuclear Palsy. Frontiers in Neurology, 2021, 12, 644064.	1.1	3
33	Validation of the Parkinson's Disease Caregiver Burden Questionnaire in Progressive Supranuclear Palsy. Parkinson's Disease, 2021, 2021, 1-7.	0.6	3
34	Cortical [<scp>¹⁸F</scp>] <scp>PI</scp> â€2620 Binding Differentiates Corticobasal Syndrome Subtypes. Movement Disorders, 2021, 36, 2104-2115.	2.2	46
35	Allogeneic BK Virus-Specific T-Cell Treatment in 2 Patients With Progressive Multifocal Leukoencephalopathy. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, e1020.	3.1	19
36	Binding characteristics of [¹⁸ F]PI-2620 distinguish the clinically predicted tau isoform in different tauopathies by PET. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2957-2972.	2.4	30

#	Article	IF	CITATIONS
37	Feasibility of short imaging protocols for [18F]PI-2620 tau-PET in progressive supranuclear palsy. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3872-3885.	3.3	22
38	Dual-Phase β-Amyloid PET Captures Neuronal Injury and Amyloidosis in Corticobasal Syndrome. Frontiers in Aging Neuroscience, 2021, 13, 661284.	1.7	13
39	Impact of TSPO Receptor Polymorphism on [18F]GE-180 Binding in Healthy Brain and Pseudo-Reference Regions of Neurooncological and Neurodegenerative Disorders. Life, 2021, 11, 484.	1.1	11
40	Clinical Features of Patients With Progressive Supranuclear Palsy in an US Insurance Claims Database. Frontiers in Neurology, 2021, 12, 571800.	1.1	14
41	Relationship Satisfaction in People with Parkinson's Disease and Their Caregivers: A Cross-Sectional Observational Study. Brain Sciences, 2021, 11, 822.	1.1	11
42	Non-invasive and high-throughput interrogation of exon-specific isoform expression. Nature Cell Biology, 2021, 23, 652-663.	4.6	11
43	Differential expression of gut miRNAs in idiopathic Parkinson's disease. Parkinsonism and Related Disorders, 2021, 88, 46-50.	1.1	8
44	Atypical pantothenate kinase-associated neurodegeneration with variable phenotypes in an Egyptian family. Heliyon, 2021, 7, e07469.	1.4	0
45	Superiority of Formalin-Fixed Paraffin-Embedded Brain Tissue for in vitro Assessment of Progressive Supranuclear Palsy Tau Pathology With [18F]PI-2620. Frontiers in Neurology, 2021, 12, 684523.	1.1	11
46	Does the Anti‶au Strategy in Progressive Supranuclear Palsy Need to Be Reconsidered? <scp>No</scp> . Movement Disorders Clinical Practice, 2021, 8, 1038-1040.	0.8	5
47	<scp>COVID</scp> â€19 Vaccineâ€Associated Cerebral Venous Thrombosis in Germany. Annals of Neurology, 2021, 90, 627-639.	2.8	122
48	Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies. Nature Reviews Neurology, 2021, 17, 601-620.	4.9	41
49	Frequency and Characterization of Movement Disorders in Anti-IgLON5 Disease. Neurology, 2021, 97, .	1.5	50
50	iPS Cell-Based Model for MAPT Haplotype as a Risk Factor for Human Tauopathies Identifies No Major Differences in TAU Expression. Frontiers in Cell and Developmental Biology, 2021, 9, 726866.	1.8	4
51	Safety and efficacy of anti-tau monoclonal antibody gosuranemab in progressive supranuclear palsy: a phase 2, randomized, placebo-controlled trial. Nature Medicine, 2021, 27, 1451-1457.	15.2	63
52	Alpha-Synuclein defects autophagy by impairing SNAP29-mediated autophagosome-lysosome fusion. Cell Death and Disease, 2021, 12, 854.	2.7	39
53	Neurological symptoms and complications in predominantly hospitalized COVIDâ€19 patients: Results of the European multinational Lean European Open Survey on SARSâ€Infected Patients (LEOSS). European Journal of Neurology, 2021, 28, 3925-3937.	1.7	25
54	Treatment of upper limb spasticity with inhibitory repetitive transcranial magnetic stimulation: A randomized placebo-controlled trial. NeuroRehabilitation, 2021, 49, 425-434.	0.5	14

#	Article	IF	CITATIONS
55	Neuropathology of progressive supranuclear palsy after treatment with tilavonemab – Author's reply. Lancet Neurology, The, 2021, 20, 787-788.	4.9	3
56	PD-1-inhibitor pembrolizumab for treatment of progressive multifocal leukoencephalopathy. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642199368.	1.5	9
57	A Modified Progressive Supranuclear Palsy Rating Scale. Movement Disorders, 2021, 36, 1203-1215.	2.2	13
58	Reply to: "Application of the <scp>mPSPRS</scp> to the Salerno Cohort― Movement Disorders, 2021, 36, 2451-2452.	2.2	0
59	Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Science Translational Medicine, 2021, 13, eabe5640.	5.8	108
60	Cerebral Microstructural Alterations in Patients With Early Parkinson's Disease Detected With Quantitative Magnetic Resonance Measurements. Frontiers in Aging Neuroscience, 2021, 13, 763331.	1.7	5
61	Analysis of Transition of Patients with Parkinson's Disease into Institutional Care: A Retrospective Pilot Study. Brain Sciences, 2021, 11, 1470.	1.1	9
62	Patient Safety in a Box: Implementation and Evaluation of the Emergency Box in Geriatric and Parkinson Patients. Journal of Clinical Medicine, 2021, 10, 5618.	1.0	1
63	Associations between sex, body mass index, and the individual microglial response in Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, .	0.4	0
64	Can SARS-CoV-2 Infection Lead to Neurodegeneration and Parkinson's Disease?. Brain Sciences, 2021, 11, 1654.	1.1	22
65	Feasibility of short imaging protocols for [¹⁸ F]Plâ€2620 tauâ€PET in progressive supranuclear palsy. Alzheimer's and Dementia, 2021, 17, .	0.4	0
66	Validation of the Movement Disorder Society Criteria for the Diagnosis of 4â€Repeat Tauopathies. Movement Disorders, 2020, 35, 171-176.	2.2	37
67	Disease-modifying strategies in primary tauopathies. Neuropharmacology, 2020, 167, 107842.	2.0	7
68	Loss of fragile X mental retardation protein precedes Lewy pathology in Parkinson's disease. Acta Neuropathologica, 2020, 139, 319-345.	3.9	17
69	Video-tutorial for the Movement Disorder Society criteria for progressive supranuclear palsy. Parkinsonism and Related Disorders, 2020, 78, 200-203.	1.1	8
70	How specific are non-motor symptoms in the prodrome of Parkinson's disease compared to other movement disorders?. Parkinsonism and Related Disorders, 2020, 81, 213-218.	1.1	8
71	Alexithymia Is Associated with Reduced Quality of Life and Increased Caregiver Burden in Parkinson's Disease. Brain Sciences, 2020, 10, 401.	1.1	18
72	Longitudinal TSPO expression in tau transgenic P301S mice predicts increased tau accumulation and deteriorated spatial learning. Journal of Neuroinflammation, 2020, 17, 208.	3.1	19

#	Article	IF	CITATIONS
73	Reply to: "Brief Clinical Rating Scales Should Not Be Overlooked― Movement Disorders, 2020, 35, 1886-1886.	2.2	3
74	Basic Fibroblast Growth Factor 2-Induced Proteome Changes Endorse Lewy Body Pathology in Hippocampal Neurons. IScience, 2020, 23, 101349.	1.9	4
75	Postinfectious Onset of Myasthenia Gravis in a COVID-19 Patient. Frontiers in Neurology, 2020, 11, 576153.	1.1	64
76	FGF2 Affects Parkinson's Disease-Associated Molecular Networks Through Exosomal Rab8b/Rab31. Frontiers in Genetics, 2020, 11, 572058.	1.1	12
77	Brain Morphological Alterations Are Detected in Earlyâ€6tage Parkinson's Disease with MRI Morphometry. Journal of Neuroimaging, 2020, 30, 786-792.	1.0	8
78	Can Autonomic Testing and Imaging Contribute to the Early Diagnosis of Multiple System Atrophy? A Systematic Review and Recommendations by the <scp>Movement Disorder Society</scp> Multiple System Atrophy Study Group. Movement Disorders Clinical Practice, 2020, 7, 750-762.	0.8	31
79	Clinical Conditions "Suggestive of Progressive Supranuclear Palsyâ€â€"Diagnostic Performance. Movement Disorders, 2020, 35, 2301-2313.	2.2	22
80	Assessment of ¹⁸ F-PI-2620 as a Biomarker in Progressive Supranuclear Palsy. JAMA Neurology, 2020, 77, 1408.	4.5	145
81	Hospitalization Rates and Comorbidities in Patients with Progressive Supranuclear Palsy in Germany from 2010 to 2017. Journal of Clinical Medicine, 2020, 9, 2454.	1.0	3
82	Glial activation is moderated by sex in response to amyloidosis but not to tau pathology in mouse models of neurodegenerative diseases. Journal of Neuroinflammation, 2020, 17, 374.	3.1	28
83	Microglial activation in vivo is moderated by sex in response to amyloidosis but not to tau pathology in mouse models of Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e039574.	0.4	Ο
84	18 Fâ€Plâ€2620 tauâ€PET in corticobasal syndrome (ActiGliA cohort). Alzheimer's and Dementia, 2020, 16, e041469.	0.4	1
85	Microglial activation and brain networks in Alzheimer's disease: The ActiGliA cohort study. Alzheimer's and Dementia, 2020, 16, e043265.	0.4	0
86	Reply to: †̃Letter to the Editor on "Copathology Progressive Supranuclear Palsy: Does It Matter?â€â€™. Movement Disorders, 2020, 35, 2126-2126.	2.2	2
87	Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathologica, 2020, 140, 99-119.	3.9	210
88	Copathology in Progressive Supranuclear Palsy: Does It Matter?. Movement Disorders, 2020, 35, 984-993.	2.2	48
89	Author response: Use of β2-adrenoreceptor agonist and antagonist drugs and risk of Parkinson disease. Neurology, 2020, 94, 899-899.	1.5	0
90	Longitudinal correlation between neurofilament light chain and UMSARS in Multiple System Atrophy. Clinical Neurology and Neurosurgery, 2020, 195, 105924.	0.6	3

#	Article	IF	CITATIONS
91	Fibroblast Growth Factor 2â€Mediated Regulation of Neuronal Exosome Release Depends on VAMP3/Cellubrevin in Hippocampal Neurons. Advanced Science, 2020, 7, 1902372.	5.6	33
92	Mindfulness and Psychological Flexibility are Inversely Associated with Caregiver Burden in Parkinson's Disease. Brain Sciences, 2020, 10, 111.	1.1	16
93	Consensus-Based Recommendations for Advance Directives of People with Parkinson's Disease in Regard to Typical Complications by German Movement Disorder Specialists. Journal of Clinical Medicine, 2020, 9, 449.	1.0	7
94	The Progressive Supranuclear Palsy Clinical Deficits Scale. Movement Disorders, 2020, 35, 650-661.	2.2	31
95	β-adrenoreceptors and the risk of Parkinson's disease. Lancet Neurology, The, 2020, 19, 247-254.	4.9	49
96	Alpha-synuclein fragments trigger distinct aggregation pathways. Cell Death and Disease, 2020, 11, 84.	2.7	19
97	Rare Variants in Specific Lysosomal Genes Are Associated With Parkinson's Disease. Movement Disorders, 2020, 35, 1245-1248.	2.2	37
98	Early-phase [18F]PI-2620 tau-PET imaging as a surrogate marker of neuronal injury. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2911-2922.	3.3	36
99	Looking into the prediagnostic phase of progressive supranuclear palsy. Parkinsonism and Related Disorders, 2020, 74, 74-75.	1.1	1
100	Private variants in PRKN are associated with late-onset Parkinson's disease. Parkinsonism and Related Disorders, 2020, 75, 24-26.	1.1	4
101	A call for a global COVID-19 Neuro Research Coalition. Lancet Neurology, The, 2020, 19, 482-484.	4.9	22
102	<scp><i>LRP1</i></scp> : A Novel Mediator of Tau Uptake. Movement Disorders, 2020, 35, 1136-1136.	2.2	1
103	Towards a consensus on developmental regression. Neuroscience and Biobehavioral Reviews, 2019, 107, 3-5.	2.9	14
104	One decade ago, one decade ahead in progressive supranuclear palsy. Movement Disorders, 2019, 34, 1284-1293.	2.2	12
105	Tau links developmental to neurodegenerative diseases. Neuroscience and Biobehavioral Reviews, 2019, 104, 26-27.	2.9	1
106	Safety and efficacy of epigallocatechin gallate in multiple system atrophy (PROMESA): a randomised, double-blind, placebo-controlled trial. Lancet Neurology, The, 2019, 18, 724-735.	4.9	79
107	Neuronal precursor cells with dopaminergic commitment in the rostral migratory stream of the mouse. Scientific Reports, 2019, 9, 13359.	1.6	12
108	PET Imaging of Astrogliosis and Tau Facilitates Diagnosis of Parkinsonian Syndromes. Frontiers in Aging Neuroscience, 2019, 11, 249.	1.7	30

#	Article	IF	CITATIONS
109	Use of β2-adrenoreceptor agonist and antagonist drugs and risk of Parkinson disease. Neurology, 2019, 93, e135-e142.	1.5	29
110	Four-repeat tauopathies. Progress in Neurobiology, 2019, 180, 101644.	2.8	141
111	A critique of the second consensus criteria for multiple system atrophy. Movement Disorders, 2019, 34, 975-984.	2.2	73
112	Clinical, pathophysiological and genetic features of motor symptoms in autosomal dominant Alzheimer's disease. Brain, 2019, 142, 1429-1440.	3.7	36
113	How to apply the movement disorder society criteria for diagnosis of progressive supranuclear palsy. Movement Disorders, 2019, 34, 1228-1232.	2.2	93
114	Safety and Tolerability of Pharmacotherapies for Parkinson's Disease in Geriatric Patients. Drugs and Aging, 2019, 36, 511-530.	1.3	38
115	Neuroimaging biomarkers for clinical trials in atypical parkinsonian disorders: Proposal for a Neuroimaging Biomarker Utility System. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 301-309.	1.2	30
116	Multiple molecular pathways stimulating macroautophagy protect from alpha-synuclein-induced toxicity in human neurons. Neuropharmacology, 2019, 149, 13-26.	2.0	14
117	Unbiased Screens for Modifiers of Alpha-Synuclein Toxicity. Current Neurology and Neuroscience Reports, 2019, 19, 8.	2.0	8
118	Mitochondrial damage by α-synuclein causes cell death in human dopaminergic neurons. Cell Death and Disease, 2019, 10, 865.	2.7	112
119	Classification of atypical parkinsonism per pathology versus phenotype. International Review of Neurobiology, 2019, 149, 37-47.	0.9	10
120	Genetic mimics of the non-genetic atypical parkinsonian disorders – the â€~atypical' atypical. International Review of Neurobiology, 2019, 149, 327-351.	0.9	8
121	Progressive supranuclear palsy. International Review of Neurobiology, 2019, 149, 49-86.	0.9	19
122	Severity dependent distribution of impairments in PSP and CBS: Interactive visualizations. Parkinsonism and Related Disorders, 2019, 60, 138-145.	1.1	7
123	Pearls & Oy-sters: Ocular motor apraxia as essential differential diagnosis to supranuclear gaze palsy. Neurology, 2018, 90, 482-485.	1.5	10
124	CXCR4 involvement in neurodegenerative diseases. Translational Psychiatry, 2018, 8, 73.	2.4	66
125	Selective Genetic Overlap Between Amyotrophic Lateral Sclerosis and Diseases of the Frontotemporal Dementia Spectrum. JAMA Neurology, 2018, 75, 860.	4.5	79
126	Is it Useful to Classify Progressive Supranuclear Palsy and Corticobasal Degeneration as Different Disorders? No. Movement Disorders Clinical Practice, 2018, 5, 141-144.	0.8	28

#	Article	IF	CITATIONS
127	Recommendations of the Global Multiple System Atrophy Research Roadmap Meeting. Neurology, 2018, 90, 74-82.	1.5	23
128	Symptomatic therapy of multiple system atrophy. Autonomic Neuroscience: Basic and Clinical, 2018, 211, 26-30.	1.4	18
129	K-variant BCHE and pesticide exposure: Gene-environment interactions in a case–control study of Parkinson's disease in Egypt. Scientific Reports, 2018, 8, 16525.	1.6	21
130	Epigenome-wide DNA methylation profiling in Progressive Supranuclear Palsy reveals major changes at DLX1. Nature Communications, 2018, 9, 2929.	5.8	20
131	Variation at the <i>TRIM11</i> locus modifies progressive supranuclear palsy phenotype. Annals of Neurology, 2018, 84, 485-496.	2.8	37
132	Exosomal secretion of α-synuclein as protective mechanism after upstream blockage of macroautophagy. Cell Death and Disease, 2018, 9, 757.	2.7	117
133	Progressive supranuclear palsy and multiple system atrophy: clinicopathological concepts and therapeutic challenges. Current Opinion in Neurology, 2018, 31, 448-454.	1.8	19
134	New classification of tauopathies. Revue Neurologique, 2018, 174, 664-668.	0.6	39
135	Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies. PLoS Medicine, 2018, 15, e1002487.	3.9	111
136	Manual MRI morphometry in Parkinsonian syndromes. Movement Disorders, 2017, 32, 778-782.	2.2	67
137	<scp>PERK</scp> activation mitigates tau pathology <i>inÂvitro</i> and <i>inÂvivo</i> . EMBO Molecular Medicine, 2017, 9, 371-384.	3.3	93
138	Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia. Acta Neuropathologica, 2017, 133, 825-837.	3.9	90
139	Differentiation of atypical Parkinson syndromes. Journal of Neural Transmission, 2017, 124, 997-1004.	1.4	30
140	Multiple System Atrophy. , 2017, , 183-192.		2
141	Which ante mortem clinical features predict progressive supranuclear palsy pathology?. Movement Disorders, 2017, 32, 995-1005.	2.2	121
142	Radiological biomarkers for diagnosis in PSP: Where are we and where do we need to be?. Movement Disorders, 2017, 32, 955-971.	2.2	179
143	Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Movement Disorders, 2017, 32, 853-864.	2.2	1,402
144	Longitudinal magnetic resonance imaging in progressive supranuclear palsy: A new combined score for clinical trials. Movement Disorders, 2017, 32, 842-852.	2.2	52

#	Article	IF	CITATIONS
145	Reply to: MRI measures of brainstem in parkinsonian syndromes: Where we stand and where we need to go. Movement Disorders, 2017, 32, 1261-1262.	2.2	1
146	Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurology, The, 2017, 16, 552-563.	4.9	303
147	Tau Diagnostics and Clinical Studies. Journal of Molecular Neuroscience, 2017, 63, 123-130.	1.1	11
148	Protective efficacy of phosphodiesterase-1 inhibition against alpha-synuclein toxicity revealed by compound screening in LUHMES cells. Scientific Reports, 2017, 7, 11469.	1.6	52
149	c.207C>G mutation in sepiapterin reductase causes autosomal dominant dopa-responsive dystonia. Neurology: Genetics, 2017, 3, e197.	0.9	10
150	Drug Safety Analysis in a Real-Life Cohort of Parkinson's Disease Patients with Polypharmacy. CNS Drugs, 2017, 31, 1093-1102.	2.7	15
151	Preclinical Analysis of Fetal Human Mesencephalic Neural Progenitor Cell Lines: Characterization and Safety In Vitro and In Vivo. Stem Cells Translational Medicine, 2017, 6, 576-588.	1.6	11
152	[18F]-THK5351 PET Correlates with Topology and Symptom Severity in Progressive Supranuclear Palsy. Frontiers in Aging Neuroscience, 2017, 9, 440.	1.7	58
153	The Differential Diagnosis and Treatment of Atypical Parkinsonism. Deutsches Ärzteblatt International, 2016, 113, 61-9.	0.6	135
154	Differential effects of social and physical environmental enrichment on brain plasticity, cognition, and ultrasonic communication in rats. Journal of Comparative Neurology, 2016, 524, 1586-1607.	0.9	122
155	l-DOPA-induced dyskinesia is associated with a deficient numerical downregulation of striatal tyrosine hydroxylase mRNA-expressing neurons. Neuroscience, 2016, 331, 120-133.	1.1	7
156	A Review of Treatment Options for Progressive Supranuclear Palsy. CNS Drugs, 2016, 30, 629-636.	2.7	36
157	Parkinson's disease: SNCA-, PARK2-, and LRRK2- targeting microRNAs elevated in cingulate gyrus. Parkinsonism and Related Disorders, 2016, 33, 115-121.	1.1	72
158	Chronic consumption of <i>Annona muricata</i> juice triggers and aggravates cerebral tau phosphorylation in wildâ€ŧype and <i><scp>MAPT</scp></i> transgenic mice. Journal of Neurochemistry, 2016, 139, 624-639.	2.1	26
159	Differentiation of neurodegenerative parkinsonian syndromes by volumetric magnetic resonance imaging analysis and support vector machine classification. Movement Disorders, 2016, 31, 1506-1517.	2.2	120
160	A genome-wide association study in multiple system atrophy. Neurology, 2016, 87, 1591-1598.	1.5	139
161	Current Treatment of Multiple System Atrophy. Current Treatment Options in Neurology, 2016, 18, 51.	0.7	9
162	microRNA profiling: increased expression of miR-147a and miR-518e in progressive supranuclear palsy (PSP). Neurogenetics, 2016, 17, 165-171.	0.7	20

#	Article	IF	CITATIONS
163	The PROMESA-protocol: progression rate of multiple system atrophy under EGCG supplementation as anti-aggregation-approach. Journal of Neural Transmission, 2016, 123, 439-445.	1.4	32
164	Power calculations and placebo effect for future clinical trials in progressive supranuclear palsy. Movement Disorders, 2016, 31, 742-747.	2.2	29
165	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
166	Progressive supranuclear palsy: progression and survival. Journal of Neurology, 2016, 263, 380-389.	1.8	55
167	The phenotypic spectrum of progressive supranuclear palsy. Parkinsonism and Related Disorders, 2016, 22, S34-S36.	1.1	65
168	Psychosis in Parkinson's disease: identification, prevention and treatment. Journal of Neural Transmission, 2016, 123, 45-50.	1.4	39
169	Early Neurodegeneration in the Brain of a Child Without Functional PKR-like Endoplasmic Reticulum Kinase. Journal of Neuropathology and Experimental Neurology, 2015, 74, 850-857.	0.9	27
170	From a single nucleotide polymorphism to tau pathology: Appoptosin is the missing link. Movement Disorders, 2015, 30, 1871-1872.	2.2	2
171	Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy. Nature Communications, 2015, 6, 7247.	5.8	170
172	A new dopaminergic nigro-olfactory projection. Acta Neuropathologica, 2015, 130, 333-348.	3.9	89
173	Glucocerebrosidase deficiency and mitochondrial impairment in experimental Parkinson disease. Journal of the Neurological Sciences, 2015, 356, 129-136.	0.3	23
174	Improved preparation of nasal lavage fluid (NLF) as a noninvasive sample for proteomic biomarker discovery. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 741-745.	1.1	6
175	Long-term treatment with I-DOPA or pramipexole affects adult neurogenesis and corresponding non-motor behavior in a mouse model of Parkinson's disease. Neuropharmacology, 2015, 95, 367-376.	2.0	51
176	Systemically administered neuregulinâ€1β1 rescues nigral dopaminergic neurons via the ErbB4 receptor tyrosine kinase in <scp>MPTP</scp> mouse models of Parkinson's disease. Journal of Neurochemistry, 2015, 133, 590-597.	2.1	22
177	Neurotoxicity of Dietary Supplements from Annonaceae Species. International Journal of Toxicology, 2015, 34, 543-550.	0.6	29
178	Diesterified Derivatives of 5-lodo-2′-Deoxyuridine as Cerebral Tumor Tracers. PLoS ONE, 2014, 9, e102397.	1.1	2
179	Mitochondrial Complex 1 Inhibition Increases 4-Repeat Isoform Tau by SRSF2 Upregulation. PLoS ONE, 2014, 9, e113070.	1.1	21
180	Piericidin A Aggravates Tau Pathology in P301S Transgenic Mice. PLoS ONE, 2014, 9, e113557.	1.1	15

#	Article	IF	CITATIONS
181	Extracellular Vesicle-Mediated Transfer of Genetic Information between the Hematopoietic System and the Brain in Response to Inflammation. PLoS Biology, 2014, 12, e1001874.	2.6	312
182	The phenotypic spectrum of progressive supranuclear palsy: A retrospective multicenter study of 100 definite cases. Movement Disorders, 2014, 29, 1758-1766.	2.2	286
183	Tideglusib reduces progression of brain atrophy in progressive supranuclear palsy in a randomized trial. Movement Disorders, 2014, 29, 479-487.	2.2	130
184	Memory deficits correlate with tau and spine pathology in <scp>P</scp> 301 <scp>S <i>MAPT</i></scp> transgenic mice. Neuropathology and Applied Neurobiology, 2014, 40, 833-843.	1.8	35
185	A phase 2 trial of the GSKâ€3 inhibitor tideglusib in progressive supranuclear palsy. Movement Disorders, 2014, 29, 470-478.	2.2	251
186	Origin of the dopaminergic innervation of adult neurogenic areas. Journal of Comparative Neurology, 2014, 522, 2336-2348.	0.9	36
187	Selegiline normalizes, while I-DOPA sustains the increased number of dopamine neurons in the olfactory bulb in a 6-OHDA mouse model of Parkinson's disease. Neuropharmacology, 2014, 79, 212-221.	2.0	21
188	Transcriptional and structural plasticity of tyrosine hydroxylase expressing neurons in both striatum and nucleus accumbens following dopaminergic denervation. Journal of Chemical Neuroanatomy, 2014, 61-62, 169-175.	1.0	7
189	Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. Journal of Neuroimmunology, 2014, 275, 165.	1.1	2
190	Subcellular expression and neuroprotective effects of SK channels in human dopaminergic neurons. Cell Death and Disease, 2014, 5, e999-e999.	2.7	56
191	Annonacin, a natural lipophilic mitochondrial complex I inhibitor, increases phosphorylation of tau in the brain of FTDP-17 transgenic mice. Experimental Neurology, 2014, 253, 113-125.	2.0	39
192	Trifluoperazine rescues human dopaminergic cells from wild-type α-synuclein-induced toxicity. Neurobiology of Aging, 2014, 35, 1700-1711.	1.5	48
193	Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurology, The, 2014, 13, 676-685.	4.9	245
194	High prevalence of <scp>NMDA</scp> receptor IgA/IgM antibodies in different dementia types. Annals of Clinical and Translational Neurology, 2014, 1, 822-832.	1.7	114
195	Tau Silencing by siRNA in the P301S Mouse Model of Tauopathy. Current Gene Therapy, 2014, 14, 343-351.	0.9	44
196	Levetiracetam but not valproate inhibits function of CD8+ T lymphocytes. Seizure: the Journal of the British Epilepsy Association, 2013, 22, 462-466.	0.9	36
197	Effect of long-term treatment with pramipexole or levodopa on presynaptic markers assessed by longitudinal [1231]FP-CIT SPECT and histochemistry. NeuroImage, 2013, 79, 191-200.	2.1	12
198	Atypical parkinsonism. Current Opinion in Neurology, 2013, 26, 401-405.	1.8	49

#	Article	IF	CITATIONS
199	Accuracy of the national institute for neurological disorders and stroke/society for progressive supranuclear palsy and neuroprotection and natural history in Parkinson plus syndromes criteria for the diagnosis of progressive supranuclear palsy. Movement Disorders, 2013, 28, 504-509.	2.2	132
200	Quantitative evaluation of the human subventricular zone. Brain, 2012, 135, e221-e221.	3.7	9
201	Brain-resident microglia predominate over infiltrating myeloid cells in activation, phagocytosis and interaction with T-lymphocytes in the MPTP mouse model of Parkinson disease. Experimental Neurology, 2012, 238, 183-191.	2.0	92
202	Neuregulin-1 receptor tyrosine kinase ErbB4 is upregulated in midbrain dopaminergic neurons in Parkinson disease. Neuroscience Letters, 2012, 531, 209-214.	1.0	22
203	Clinical pain and experimental pain sensitivity in progressive supranuclear palsy. Parkinsonism and Related Disorders, 2012, 18, 606-608.	1.1	19
204	Validation of mobile eye-tracking as novel and efficient means for differentiating progressive supranuclear palsy from Parkinson's disease. Frontiers in Behavioral Neuroscience, 2012, 6, 88.	1.0	44
205	Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nature Genetics, 2011, 43, 699-705.	9.4	502
206	Biodistribution and brain permeability of the extracellular domain of neuregulin-1-β1. Neuropharmacology, 2011, 61, 1413-1418.	2.0	28
207	Possible Involvement of Complement Factor C1q in the Clearance of Extracellular Neuromelanin From the Substantia Nigra in Parkinson Disease. Journal of Neuropathology and Experimental Neurology, 2011, 70, 125-132.	0.9	74
208	Systemic administration of neuregulinâ€lβ ₁ protects dopaminergic neurons in a mouse model of Parkinson's disease. Journal of Neurochemistry, 2011, 117, 1066-1074.	2.1	68
209	Upregulation of microglial C1q expression has no effects on nigrostriatal dopaminergic injury in the MPTP mouse model of Parkinson disease. Journal of Neuroimmunology, 2011, 236, 39-46.	1.1	34
210	Magnetic resonance imaging in progressive supranuclear palsy. Journal of Neurology, 2011, 258, 549-558.	1.8	44
211	Cost-of-illness in multiple system atrophy and progressive supranuclear palsy. Journal of Neurology, 2011, 258, 1827-1834.	1.8	11
212	Mitochondrial Dysfunction as a Therapeutic Target in Progressive Supranuclear Palsy. Journal of Molecular Neuroscience, 2011, 45, 684-689.	1.1	19
213	Hypodipsia discriminates progressive supranuclear palsy from other parkinsonian syndromes. Movement Disorders, 2011, 26, 901-905.	2.2	3
214	Microglial glucocorticoid receptors play a pivotal role in regulating dopaminergic neurodegeneration in parkinsonism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6632-6637.	3.3	184
215	Health-Related Quality of Life in Multiple System Atrophy and Progressive Supranuclear Palsy. Neurodegenerative Diseases, 2011, 8, 438-446.	0.8	53
216	Cerebral bioimaging of Cu, Fe, Zn, and Mn in the MPTP mouse model of Parkinson's disease using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Journal of the American Society for Mass Spectrometry, 2010, 21, 161-171.	1.2	181

#	Article	IF	CITATIONS
217	In vivo demonstration of microstructural brain pathology in progressive supranuclear palsy: A DTI study using TBSS. Movement Disorders, 2010, 25, 1232-1238.	2.2	70
218	A brain-specific isoform of mitochondrial apoptosis-inducing factor: AIF2. Cell Death and Differentiation, 2010, 17, 1155-1166.	5.0	37
219	Rational therapeutic approaches to progressive supranuclear palsy. Brain, 2010, 133, 1578-1590.	3.7	83
220	Zonisamide: Aspects in neuroprotection. Experimental Neurology, 2010, 224, 336-339.	2.0	19
221	Nigrostriatal upregulation of 5â€HT _{2A} receptors correlates with motor dysfunction in progressive supranuclear palsy. Movement Disorders, 2009, 24, 1170-1175.	2.2	13
222	Rostro-Caudal Gradual Loss of Cellular Diversity Within the Periventricular Regions of the Ventricular System. Stem Cells, 2009, 27, 928-941.	1.4	39
223	<i>In vivo</i> Evidence for Cerebral Depletion in High-Energy Phosphates in Progressive Supranuclear Palsy. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 861-870.	2.4	43
224	Tauopathies with parkinsonism: clinical spectrum, neuropathologic basis, biological markers, and treatment options. European Journal of Neurology, 2009, 16, 297-309.	1.7	170
225	New insights into the relationship of neurogenesis and affect: tickling induces hippocampal cell proliferation in rats emitting appetitive 50-kHz ultrasonic vocalizations. Neuroscience, 2009, 163, 1024-1030.	1.1	53
226	Neurogenesis in Substantia Nigra of Parkinsonian Brains?. , 2009, , 279-285.		23
227	Natural lipophilic inhibitors of mitochondrial complex I are candidate toxins for sporadic neurodegenerative tau pathologies. Experimental Neurology, 2009, 220, 133-142.	2.0	76
228	Neurodegenerative Diseases: Neurotoxins as Sufficient Etiologic Agents?. NeuroMolecular Medicine, 2008, 10, 1-9.	1.8	54
229	Shortâ€ŧerm effects of coenzyme Q ₁₀ in progressive supranuclear palsy: A randomized, placeboâ€controlled trial. Movement Disorders, 2008, 23, 942-949.	2.2	135
230	Deficiency of Aph1B/C-Î ³ -secretase disturbs Nrg1 cleavage and sensorimotor gating that can be reversed with antipsychotic treatment. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9775-9780.	3.3	77
231	Characterization of the striatal 6-OHDA model of Parkinson's disease in wild type and α-synuclein-deleted mice. Experimental Neurology, 2008, 210, 182-193.	2.0	135
232	M. Parkinson – Zukünftige Therapieoptionen aus der Grundlagenforschung. E-Neuroforum, 2008, 14, 234-241.	0.2	0
233	Activation of the subventricular zone in multiple sclerosis: Evidence for early glial progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4694-4699.	3.3	299
234	The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3585-3590.	3.3	245

#	Article	IF	CITATIONS
235	Glia Protects Neurons against Extracellular Human Neuromelanin. Neurodegenerative Diseases, 2007, 4, 218-226.	0.8	18
236	Atypical parkinsonism in Guadeloupe: a common risk factor for two closely related phenotypes?. Brain, 2007, 130, 816-827.	3.7	99
237	Annonacin, a Natural Mitochondrial Complex I Inhibitor, Causes Tau Pathology in Cultured Neurons. Journal of Neuroscience, 2007, 27, 7827-7837.	1.7	176
238	Hyperkalaemia in a tetraplegic adolescent due to de novo sodium channel mutation. Nephrology Dialysis Transplantation, 2007, 23, 1449-1451.	0.4	2
239	Quantitative [1231]FP-CIT pinhole SPECT imaging predicts striatal dopamine levels, but not number of nigral neurons in different mouse models of Parkinson's disease. NeuroImage, 2007, 38, 5-12.	2.1	39
240	Dopamine and adult neurogenesis. Journal of Neurochemistry, 2007, 100, 587-595.	2.1	173
241	New striatal dopamine neurons in MPTP-treated macaques result from a phenotypic shift and not neurogenesis. Brain, 2006, 129, 1194-1200.	3.7	124
242	Dopaminergic Substantia Nigra Neurons Project Topographically Organized to the Subventricular Zone and Stimulate Precursor Cell Proliferation in Aged Primates. Journal of Neuroscience, 2006, 26, 2321-2325.	1.7	138
243	The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. Journal of Neurochemistry, 2005, 95, 930-939.	2.1	183
244	Experimental evidence for a toxic etiology of tropical parkinsonism. Movement Disorders, 2005, 20, 118-119.	2.2	18
245	Quantification of acetogenins in Annona muricata linked to atypical parkinsonism in guadeloupe. Movement Disorders, 2005, 20, 1629-1633.	2.2	103
246	Annonacin, a lipophilic inhibitor of mitochondrial complex I, induces nigral and striatal neurodegeneration in rats: possible relevance for atypical parkinsonism in Guadeloupe. Journal of Neurochemistry, 2004, 88, 63-69.	2.1	187
247	Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nature Neuroscience, 2004, 7, 726-735.	7.1	842
248	Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. Journal of Neurochemistry, 2003, 84, 491-502.	2.1	284
249	Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson's disease. Journal of Neurochemistry, 2003, 86, 1297-1307.	2.1	239
250	Rat fetal ventral mesencephalon grown as solid tissue cultures: influence of culture time and BDNF treatment on dopamine neuron survival and function. Brain Research, 1998, 813, 313-322.	1.1	48
251	Patterns and implications of neurological examination findings in autosomal dominant Alzheimer disease. Alzheimer's and Dementia, 0, , .	0.4	2