
Faisal Mahmood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1238581/publications.pdf Version: 2024-02-01

FAISAL MAHMOOD

#	Article	IF	CITATIONS
1	Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for Cancer Diagnosis and Prognosis. IEEE Transactions on Medical Imaging, 2022, 41, 757-770.	5.4	190
2	Federated learning for computational pathology on gigapixel whole slide images. Medical Image Analysis, 2022, 76, 102298.	7.0	93
3	Deep learning-enabled assessment of cardiac allograft rejection from endomyocardial biopsies. Nature Medicine, 2022, 28, 575-582.	15.2	44
4	Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology. Medical Image Analysis, 2022, 79, 102474.	7.0	64
5	Digitising heart transplant rejection. Lancet, The, 2022, 400, 17.	6.3	3
6	Whole Slide Images are 2D Point Clouds: Context-Aware Survival Prediction Using Patch-Based Graph Convolutional Networks. Lecture Notes in Computer Science, 2021, , 339-349.	1.0	51
7	Abstract PO-007: Deep learning-based computational pathology predicts origins for cancers of unknown primary. Clinical Cancer Research, 2021, 27, PO-007-PO-007.	3.2	4
8	Data-efficient and weakly supervised computational pathology on whole-slide images. Nature Biomedical Engineering, 2021, 5, 555-570.	11.6	539
9	VR-Caps: A Virtual Environment for Capsule Endoscopy. Medical Image Analysis, 2021, 70, 101990.	7.0	40
10	Al-based pathology predicts origins for cancers of unknown primary. Nature, 2021, 594, 106-110.	13.7	294
11	Synthetic data in machine learning for medicine and healthcare. Nature Biomedical Engineering, 2021, 5, 493-497.	11.6	249
12	EndoSLAM dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic videos. Medical Image Analysis, 2021, 71, 102058.	7.0	84
13	Multiplex computational pathology for treatment response prediction. Cancer Cell, 2021, 39, 1053-1055.	7.7	7
14	Multimodal Co-Attention Transformer for Survival Prediction in Gigapixel Whole Slide Images. , 2021, ,		67
15	Deep Adversarial Training for Multi-Organ Nuclei Segmentation in Histopathology Images. IEEE Transactions on Medical Imaging, 2020, 39, 3257-3267.	5.4	190
16	GANPOP: Generative Adversarial Network Prediction of Optical Properties From Single Snapshot Wide-Field Images. IEEE Transactions on Medical Imaging, 2020, 39, 1988-1999.	5.4	25
17	Weakly Supervised Prostate Tma Classification Via Graph Convolutional Networks. , 2020, , .		26
18	EndoL2H: Deep Super-Resolution for Capsule Endoscopy. IEEE Transactions on Medical Imaging, 2020, 39, 4297-4309.	5.4	29

Faisal Mahmood

#	Article	IF	CITATIONS
19	Semi-supervised breast cancer histology classification using deep multiple instance learning and contrast predictive coding (Conference Presentation). , 2020, , .		27
20	Learning to Navigate Endoscopic Capsule Robots. IEEE Robotics and Automation Letters, 2019, 4, 3075-3082.	3.3	16
21	Large dynamic range autorefraction with a low-cost diffuser wavefront sensor. Biomedical Optics Express, 2019, 10, 1718.	1.5	10
22	DeepLSR: a deep learning approach for laser speckle reduction. Biomedical Optics Express, 2019, 10, 2869.	1.5	21
23	Polyp segmentation and classification using predicted depth from monocular endoscopy. , 2019, , .		11
24	Adversarial U-net with spectral normalization for multi-organ histopathology image segmentation. , 2019, , .		1
25	Speckle reduction in laser illuminated endoscopy using adversarial deep learning. , 2019, , .		1
26	An Extended Field-Based Method for Noise Removal From Electron Tomographic Reconstructions. IEEE Access, 2018, 6, 17326-17339.	2.6	1
27	Adaptive Graph-Based Total Variation for Tomographic Reconstructions. IEEE Signal Processing Letters, 2018, 25, 700-704.	2.1	29
28	Algorithm and Architecture Optimization for 2D Discrete Fourier Transforms with Simultaneous Edge Artifact Removal. International Journal of Reconfigurable Computing, 2018, 2018, 1-17.	0.2	4
29	Deep learning with cinematic rendering: fine-tuning deep neural networks using photorealistic medical images. Physics in Medicine and Biology, 2018, 63, 185012.	1.6	34
30	Unsupervised Reverse Domain Adaptation for Synthetic Medical Images via Adversarial Training. IEEE Transactions on Medical Imaging, 2018, 37, 2572-2581.	5.4	164
31	Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy. Medical Image Analysis, 2018, 48, 230-243.	7.0	97
32	Topographical reconstructions from monocular optical colonoscopy images via deep learning. , 2018, , .		5
33	Deep learning-based depth estimation from a synthetic endoscopy image training set. , 2018, , .		8
34	Quantitative polyp size measurements with photometric stereo endoscopy enhanced by deep learning (Conference Presentation). , 2018, , .		0
35	Reducing the Cost of Removing Border Artefacts in Fourier Transforms. , 2017, , .		1
36	Effect of Subliminal Lexical Priming on the Subjective Perception of Images: A Machine Learning Approach. PLoS ONE, 2016, 11, e0148332.	1.1	9

#	Article	IF	CITATIONS
37	Graph-based sinogram denoising for tomographic reconstructions. , 2016, 2016, 3961-3664.		5
38	2D Discrete Fourier Transform with simultaneous edge artifact removal for real-time applications. , 2015, , .		13
39	On the effect of subliminal priming on subjective perception of images: A machine learning approach. , 2014, 2014, 5438-41.		2