J S Halekas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/123818/publications.pdf

Version: 2024-02-01

346 papers 12,919 citations

26626
56
h-index

93 g-index

377 all docs

377 docs citations

times ranked

377

3875 citing authors

#	Article	IF	CITATIONS
1	The Mars Atmosphere and Volatile Evolution (MAVEN) Mission. Space Science Reviews, 2015, 195, 3-48.	8.1	563
2	Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus. Space Science Reviews, 2016, 204, 131-186.	8.1	439
3	The Space Physics Environment Data Analysis System (SPEDAS). Space Science Reviews, 2019, 215, 9.	8.1	332
4	Alfvénic velocity spikes and rotational flows in the near-Sun solar wind. Nature, 2019, 576, 228-231.	27.8	311
5	The Solar Wind Ion Analyzer for MAVEN. Space Science Reviews, 2015, 195, 125-151.	8.1	300
6	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	2.5	216
7	Structure, dynamics, and seasonal variability of the Marsâ€solar wind interaction: MAVEN Solar Wind Ion Analyzer inâ€flight performance and science results. Journal of Geophysical Research: Space Physics, 2017, 122, 547-578.	2.4	191
8	Initial mapping and interpretation of lunar crustal magnetic anomalies using Lunar Prospector magnetometer data. Journal of Geophysical Research, 2001, 106, 27825-27839.	3. 3	187
9	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	12.6	166
10	Global mapping of lunar crustal magnetic fields by Lunar Prospector. Icarus, 2008, 194, 401-409.	2.5	162
11	Electron pitch angle distributions as indicators of magnetic field topology near Mars. Journal of Geophysical Research, 2007, 112 , .	3.3	153
12	Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel. Geophysical Research Letters, 2015, 42, 8942-8950.	4.0	143
13	On the origin of aurorae on Mars. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	139
14	Electrons and magnetic fields in the lunar plasma wake. Journal of Geophysical Research, 2005, 110, .	3.3	133
15	Mapping of crustal magnetic anomalies on the lunar near side by the Lunar Prospector electron reflectometer. Journal of Geophysical Research, 2001, 106, 27841-27852.	3.3	132
16	Lunar Prospector observations of the electrostatic potential of the lunar surface and its response to incident currents. Journal of Geophysical Research, 2008, 113, .	3.3	125
17	Variability of the altitude of the Martian sheath. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	121
18	The spatial distribution of planetary ion fluxes near Mars observed by MAVEN. Geophysical Research Letters, 2015, 42, 9142-9148.	4.0	115

#	Article	IF	Citations
19	The Solar Probe ANalyzers—Electrons on the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 74.	7.7	114
20	Hydrogen escape from Mars enhanced by deep convection in dust storms. Nature Astronomy, 2018, 2, 126-132.	10.1	112
21	A comparison of global models for the solar wind interaction with Mars. Icarus, 2010, 206, 139-151.	2.5	108
22	New views of the lunar plasma environment. Planetary and Space Science, 2011, 59, 1681-1694.	1.7	108
23	Photochemical escape of oxygen from Mars: First results from MAVEN in situ data. Journal of Geophysical Research: Space Physics, 2017, 122, 3815-3836.	2.4	106
24	<i>Parker Solar Probe</i> Enters the Magnetically Dominated Solar Corona. Physical Review Letters, 2021, 127, 255101.	7.8	104
25	First results of the <scp>MAVEN</scp> magnetic field investigation. Geophysical Research Letters, 2015, 42, 8819-8827.	4.0	102
26	Electrons in the Young Solar Wind: First Results from the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 22.	7.7	99
27	Episodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape. Geophysical Research Letters, 2010, 37, .	4.0	97
28	Evidence for collisionless magnetic reconnection at Mars. Geophysical Research Letters, 2008, 35, .	4.0	94
29	Evidence for negative charging of the lunar surface in shadow. Geophysical Research Letters, 2002, 29, 77-1-77-4.	4.0	90
30	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 2015, 350, aad0459.	12.6	90
31	Complex electric fields near the lunar terminator: The nearâ€surface wake and accelerated dust. Geophysical Research Letters, 2007, 34, .	4.0	86
32	Time history of the Martian dynamo from crater magnetic field analysis. Journal of Geophysical Research E: Planets, 2013, 118, 1488-1511.	3.6	86
33	Dependence of lunar surface charging on solar wind plasma conditions and solar irradiation. Planetary and Space Science, 2014, 90, 10-27.	1.7	83
34	The magnetic field draping direction at Mars from April 1999 through August 2004. Icarus, 2006, 182, 464-473.	2.5	82
35	Seasonal variability of the hydrogen exosphere of Mars. Journal of Geophysical Research E: Planets, 2017, 122, 901-911.	3.6	81
36	Extreme lunar surface charging during solar energetic particle events. Geophysical Research Letters, 2007, 34, .	4.0	80

#	Article	IF	Citations
37	Variability of helium, neon, and argon in the lunar exosphere as observed by the LADEE NMS instrument. Geophysical Research Letters, 2015, 42, 3723-3729.	4.0	79
38	MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars. Geophysical Research Letters, 2015, 42, 8901-8909.	4.0	78
39	MAVEN observations of the solar cycle 24 space weather conditions at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 2768-2794.	2.4	78
40	Observations and Impacts of the 10 September 2017 Solar Events at Mars: An Overview and Synthesis of the Initial Results. Geophysical Research Letters, 2018, 45, 8871-8885.	4.0	77
41	Anticipated electrical environment within permanently shadowed lunar craters. Journal of Geophysical Research, 2010, 115, .	3.3	73
42	Observations of aurorae by SPICAM ultraviolet spectrograph on board Mars Express: Simultaneous ASPERAâ€3 and MARSIS measurements. Journal of Geophysical Research, 2008, 113, .	3.3	70
43	Solar wind access to lunar polar craters: Feedback between surface charging and plasma expansion. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	68
44	Large negative lunar surface potentials in sunlight and shadow. Geophysical Research Letters, 2005, 32, .	4.0	67
45	A Solar Source of Alfvénic Magnetic Field Switchbacks: In Situ Remnants of Magnetic Funnels on Supergranulation Scales. Astrophysical Journal, 2021, 923, 174.	4.5	67
46	In situ observations of reconnection Hall magnetic fields at Mars: Evidence for ion diffusion region encounters. Journal of Geophysical Research, 2009, 114 , .	3.3	66
47	Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 4009-4022.	2.4	66
48	The Twisted Configuration of the Martian Magnetotail: MAVEN Observations. Geophysical Research Letters, 2018, 45, 4559-4568.	4.0	66
49	Density cavity observed over a strong lunar crustal magnetic anomaly in the solar wind: A mini-magnetosphere?. Planetary and Space Science, 2008, 56, 941-946.	1.7	65
50	Flows, Fields, and Forces in the Marsâ€Solar Wind Interaction. Journal of Geophysical Research: Space Physics, 2017, 122, 11,320.	2.4	64
51	On the role of dust in the lunar ionosphere. Planetary and Space Science, 2011, 59, 1659-1664.	1.7	63
52	Magnetic fields of lunar multiâ€ring impact basins. Meteoritics and Planetary Science, 2003, 38, 565-578.	1.6	62
53	The Mars crustal magnetic field control of plasma boundary locations and atmospheric loss: MHD prediction and comparison with MAVEN. Journal of Geophysical Research: Space Physics, 2017, 122, 4117-4137.	2.4	60
54	Magnetic reconnection in the nearâ€Mars magnetotail: MAVEN observations. Geophysical Research Letters, 2015, 42, 8838-8845.	4.0	59

#	Article	IF	CITATIONS
55	Origins of the Martian aurora observed by Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM) on board Mars Express. Journal of Geophysical Research, 2006, 111, .	3.3	58
56	MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations. Geophysical Research Letters, 2015, 42, 9113-9120.	4.0	58
57	Current sheets at low altitudes in the Martian magnetotail. Geophysical Research Letters, 2006, 33, .	4.0	56
58	Lunar Prospector measurements of secondary electron emission from lunar regolith. Planetary and Space Science, 2009, 57, 78-82.	1.7	56
59	Lunar surface charging during solar energetic particle events: Measurement and prediction. Journal of Geophysical Research, 2009, $114, \ldots$	3.3	56
60	MAVEN measured oxygen and hydrogen pickup ions: Probing the Martian exosphere and neutral escape. Journal of Geophysical Research: Space Physics, 2017, 122, 3689-3706.	2.4	55
61	The global current systems of the Martian induced magnetosphere. Nature Astronomy, 2020, 4, 979-985.	10.1	55
62	Anticorrelation between the Bulk Speed and the Electron Temperature in the Pristine Solar Wind: First Results from the <i>Parker Solar Probe</i> Journal, Supplement Series, 2020, 246, 62.	7.7	55
63	Localized ionization patches in the nighttime ionosphere of Mars and their electrodynamic consequences. Icarus, 2010, 206, 112-119.	2.5	54
64	Multifluid MHD study of the solar wind interaction with Mars' upper atmosphere during the 2015 March 8th ICME event. Geophysical Research Letters, 2015, 42, 9103-9112.	4.0	54
65	MAVEN insights into oxygen pickup ions at Mars. Geophysical Research Letters, 2015, 42, 8870-8876.	4.0	53
66	Correlation of a strong lunar magnetic anomaly with a high-albedo region of the Descartes mountains. Geophysical Research Letters, 2003, 30, .	4.0	52
67	Magnetotail dynamics at Mars: Initial MAVEN observations. Geophysical Research Letters, 2015, 42, 8828-8837.	4.0	52
68	Characterization of Lowâ€Altitude Nightside Martian Magnetic Topology Using Electron Pitch Angle Distributions. Journal of Geophysical Research: Space Physics, 2017, 122, 9777-9789.	2.4	52
69	Relating Streamer Flows to Density and Magnetic Structures at the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 37.	7.7	52
70	Whistler waves observed near lunar crustal magnetic sources. Geophysical Research Letters, 2006, 33,	4.0	51
71	Negative potentials above the day-side lunar surface in the terrestrial plasma sheet: Evidence of non-monotonic potentials. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	50
72	Proton cyclotron waves occurrence rate upstream from Mars observed by MAVEN: Associated variability of the Martian upper atmosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 11,113.	2.4	50

#	Article	IF	CITATIONS
73	Discovery of a proton aurora at Mars. Nature Astronomy, 2018, 2, 802-807.	10.1	50
74	Characteristic Scales of Magnetic Switchback Patches Near the Sun and Their Possible Association With Solar Supergranulation and Granulation. Astrophysical Journal, 2021, 919, 96.	4.5	50
75	Model calculations of electron precipitation induced ionization patches on the nightside of Mars. Geophysical Research Letters, 2007, 34, .	4.0	47
76	ARTEMIS Science Objectives. Space Science Reviews, 2011, 165, 59-91.	8.1	47
77	Response of Mars O ⁺ pickup ions to the 8 March 2015 ICME: Inferences from MAVEN dataâ€based models. Geophysical Research Letters, 2015, 42, 9095-9102.	4.0	47
78	Lunar pickup ions observed by ARTEMIS: Spatial and temporal distribution and constraints on species and source locations. Journal of Geophysical Research, 2012, 117, .	3.3	45
79	Lowâ€frequency waves in the Martian magnetosphere and their response to upstream solar wind driving conditions. Geophysical Research Letters, 2015, 42, 8917-8924.	4.0	45
80	Study of impact demagnetization at Mars using Monte Carlo modeling and multiple altitude data. Journal of Geophysical Research, 2010, 115 , .	3.3	44
81	First Results from ARTEMIS, a New Two-Spacecraft Lunar Mission: Counter-Streaming Plasma Populations in the Lunar Wake. Space Science Reviews, 2011, 165, 93-107.	8.1	44
82	First lunar wake passage of ARTEMIS: Discrimination of wake effects and solar wind fluctuations by 3D hybrid simulations. Planetary and Space Science, 2011, 59, 661-671.	1.7	44
83	Statistical Study of Relations Between the Induced Magnetosphere, Ion Composition, and Pressure Balance Boundaries Around Mars Based On MAVEN Observations. Journal of Geophysical Research: Space Physics, 2017, 122, 9723-9737.	2.4	44
84	The Effect of Solar Wind Variations on the Escape of Oxygen Ions From Mars Through Different Channels: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2017, 122, 11,285.	2.4	44
85	Magnetic Reconnection on Dayside Crustal Magnetic Fields at Mars: MAVEN Observations. Geophysical Research Letters, 2018, 45, 4550-4558.	4.0	44
86	Global Aurora on Mars During the September 2017 Space Weather Event. Geophysical Research Letters, 2018, 45, 7391-7398.	4.0	44
87	Loss of solar wind plasma neutrality and affect on surface potentials near the lunar terminator and shadowed polar regions. Geophysical Research Letters, 2008, 35, .	4.0	43
88	A statistical study of flux ropes in the Martian magnetosphere. Planetary and Space Science, 2011, 59, 1498-1505.	1.7	43
89	On the occurrence of magnetic enhancements caused by solar wind interaction with lunar crustal fields. Geophysical Research Letters, 2006, 33, .	4.0	42
90	Detections of lunar exospheric ions by the LADEE neutral mass spectrometer. Geophysical Research Letters, 2015, 42, 5162-5169.	4.0	42

#	Article	IF	CITATIONS
91	Ionopauseâ€like density gradients in the Martian ionosphere: A first look with MAVEN. Geophysical Research Letters, 2015, 42, 8885-8893.	4.0	42
92	Altitude dependence of nightside Martian suprathermal electron depletions as revealed by MAVEN observations. Geophysical Research Letters, 2015, 42, 8877-8884.	4.0	41
93	ARTEMIS observations of lunar pickâ€up ions in the terrestrial magnetotail lobes. Geophysical Research Letters, 2012, 39, .	4.0	40
94	Survey of magnetic reconnection signatures in the Martian magnetotail with MAVEN. Journal of Geophysical Research: Space Physics, 2017, 122, 5114-5131.	2.4	40
95	Martian magnetic storms. Journal of Geophysical Research: Space Physics, 2017, 122, 6185-6209.	2.4	40
96	Variations of the Martian plasma environment during the ICME passage on 8 March 2015: A timeâ€dependent MHD study. Journal of Geophysical Research: Space Physics, 2017, 122, 1714-1730.	2.4	40
97	The Threeâ€Dimensional Bow Shock of Mars as Observed by MAVEN. Journal of Geophysical Research: Space Physics, 2018, 123, 4542-4555.	2.4	40
98	MAVEN Observations of Solar Windâ€Driven Magnetosonic Waves Heating the Martian Dayside Ionosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 4129-4149.	2.4	40
99	Mars heavy ion precipitating flux as measured by Mars Atmosphere and Volatile EvolutioN. Geophysical Research Letters, 2015, 42, 9135-9141.	4.0	39
100	MAVEN and MEX Multiâ€instrument Study of the Dayside of the Martian Induced Magnetospheric Structure Revealed by Pressure Analyses. Journal of Geophysical Research: Space Physics, 2019, 124, 8564-8589.	2.4	39
101	The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe's First Orbit. Astrophysical Journal Letters, 2020, 894, L19.	8.3	39
102	Solar wind interaction with lunar crustal magnetic anomalies. Advances in Space Research, 2008, 41, 1319-1324.	2.6	38
103	MAVEN observations of partially developed Kelvinâ€Helmholtz vortices at Mars. Geophysical Research Letters, 2016, 43, 4763-4773.	4.0	38
104	Seasonal Variability of Neutral Escape from Mars as Derived From MAVEN Pickup Ion Observations. Journal of Geophysical Research E: Planets, 2018, 123, 1192-1202.	3.6	38
105	MAVEN observations of tail current sheet flapping at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 4308-4324.	2.4	37
106	Demagnetization signatures of lunar impact craters. Geophysical Research Letters, 2002, 29, 23-1.	4.0	36
107	Plasma clouds and snowplows: Bulk plasma escape from Mars observed by MAVEN. Geophysical Research Letters, 2016, 43, 1426-1434.	4.0	36
108	Implications of MAVEN Mars nearâ€wake measurements and models. Geophysical Research Letters, 2015, 42, 9087-9094.	4.0	35

#	Article	IF	CITATIONS
109	Ionizing Electrons on the Martian Nightside: Structure and Variability. Journal of Geophysical Research: Space Physics, 2018, 123, 4349-4363.	2.4	35
110	The Influence of Solar Wind Pressure on Martian Crustal Magnetic Field Topology. Geophysical Research Letters, 2019, 46, 2347-2354.	4.0	35
111	Mars' Ionopause: A Matter of Pressures. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028145.	2.4	35
112	Concerning the dissipation of electrically charged objects in the shadowed lunar polar regions. Geophysical Research Letters, 2008, 35, .	4.0	34
113	Particleâ€inâ€cell simulations of the solar wind interaction with lunar crustal magnetic anomalies: Magnetic cusp regions. Journal of Geophysical Research, 2012, 117, .	3.3	34
114	ARTEMIS observations of extreme diamagnetic fields in the lunar wake. Geophysical Research Letters, 2014, 41, 3766-3773.	4.0	34
115	Marsward and tailward ions in the nearâ€Mars magnetotail: MAVEN observations. Geophysical Research Letters, 2015, 42, 8925-8932.	4.0	34
116	Formation Timescales of Amorphous Rims on Lunar Grains Derived From ARTEMIS Observations. Journal of Geophysical Research E: Planets, 2018, 123, 37-46.	3.6	34
117	Solar wind electron interaction with the dayside lunar surface and crustal magnetic fields: Evidence for precursor effects. Earth, Planets and Space, 2012, 64, 73-82.	2.5	33
118	Evidence for smallâ€scale collisionless shocks at the Moon from ARTEMIS. Geophysical Research Letters, 2014, 41, 7436-7443.	4.0	33
119	Solar wind interaction with comet 67P: Impacts of corotating interaction regions. Journal of Geophysical Research: Space Physics, 2016, 121, 949-965.	2.4	33
120	Using ARTEMIS pickup ion observations to place constraints on the lunar atmosphere. Journal of Geophysical Research E: Planets, 2013, 118, 81-88.	3.6	32
121	Solar Wind Induced Waves in the Skies of Mars: Ionospheric Compression, Energization, and Escape Resulting From the Impact of Ultralow Frequency Magnetosonic Waves Generated Upstream of the Martian Bow Shock. Journal of Geophysical Research: Space Physics, 2018, 123, 7241-7256.	2.4	32
122	Electron heat flux in the near-Sun environment. Astronomy and Astrophysics, 2021, 650, A15.	5.1	32
123	Lunar precursor effects in the solar wind and terrestrial magnetosphere. Journal of Geophysical Research, 2012, 117, .	3.3	31
124	Distribution and variability of accelerated electrons at Mars. Advances in Space Research, 2008, 41, 1347-1352.	2.6	30
125	Impact demagnetization of the Martian crust: Current knowledge and future directions. Earth and Planetary Science Letters, 2011, 305, 257-269.	4.4	30
126	Characterization of turbulence in the Mars plasma environment with MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 656-674.	2.4	30

#	Article	IF	CITATIONS
127	Effects of solar irradiance on the upper ionosphere and oxygen ion escape at Mars: MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 7142-7152.	2.4	30
128	Electric and magnetic variations in the nearâ€Mars environment. Journal of Geophysical Research: Space Physics, 2017, 122, 8536-8559.	2.4	30
129	Plasma Waves near the Electron Cyclotron Frequency in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 21.	7.7	30
130	The effects of reflected protons on the plasma environment of the moon for parallel interplanetary magnetic fields. Geophysical Research Letters, 2013, 40, 4544-4548.	4.0	29
131	Statistical characterization of the foremoon particle and wave morphology: ARTEMIS observations. Journal of Geophysical Research: Space Physics, 2015, 120, 4907-4921.	2.4	29
132	Measurements of Forbush decreases at Mars: both by MSL on ground and by MAVEN in orbit. Astronomy and Astrophysics, 2018, 611, A79.	5.1	29
133	The Impact and Solar Wind Proxy of the 2017 September ICME Event at Mars. Geophysical Research Letters, 2018, 45, 7248-7256.	4.0	29
134	Statistical Study of Heavy Ion Outflows From Mars Observed in the Martianâ€Induced Magnetotail by MAVEN. Journal of Geophysical Research: Space Physics, 2019, 124, 5482-5497.	2.4	29
135	Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence. Physical Review Letters, 2020, 125, 025102.	7.8	29
136	The Martian Photoelectron Boundary as Seen by MAVEN. Journal of Geophysical Research: Space Physics, 2017, 122, 10,472.	2.4	28
137	Comparative study of the Martian suprathermal electron depletions based on Mars Global Surveyor, Mars Express, and Mars Atmosphere and Volatile EvolutioN mission observations. Journal of Geophysical Research: Space Physics, 2017, 122, 857-873.	2.4	28
138	On the origins of magnetic flux ropes in nearâ€Mars magnetotail current sheets. Geophysical Research Letters, 2017, 44, 7653-7662.	4.0	28
139	Kinetic instabilities in the lunar wake: ARTEMIS observations. Journal of Geophysical Research, 2012, 117, .	3.3	27
140	The effects of solar wind velocity distributions on the refilling of the lunar wake: ARTEMIS observations and comparisons to oneâ€dimensional theory. Journal of Geophysical Research: Space Physics, 2014, 119, 5133-5149.	2.4	27
141	MAVEN observations of electronâ€induced whistler mode waves in the Martian magnetosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 9717-9731.	2.4	27
142	On the Origins of Mars' Exospheric Nonthermal Oxygen Component as Observed by MAVEN and Modeled by HELIOSARES. Journal of Geophysical Research E: Planets, 2017, 122, 2401-2428.	3.6	27
143	Importance of Ambipolar Electric Field in Driving Ion Loss From Mars: Results From a Multifluid MHD Model With the Electron Pressure Equation Included. Journal of Geophysical Research: Space Physics, 2019, 124, 9040-9057.	2.4	27
144	First remote measurements of lunar surface charging from ARTEMIS: Evidence for nonmonotonic sheath potentials above the dayside surface. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	26

#	Article	IF	CITATIONS
145	A chain of magnetic flux ropes in the magnetotail of Mars. Geophysical Research Letters, 2012, 39, .	4.0	26
146	ARTEMIS observations of terrestrial ionospheric molecular ion outflow at the Moon. Geophysical Research Letters, 2016, 43, 6749-6758.	4.0	26
147	Autocorrelation Study of Solar Wind Plasma and IMF Properties as Measured by the MAVEN Spacecraft. Journal of Geophysical Research: Space Physics, 2018, 123, 2493-2512.	2.4	26
148	How strong are lunar crustal magnetic fields at the surface?: Considerations from a reexamination of the electron reflectometry technique. Journal of Geophysical Research, 2010, 115, .	3.3	25
149	Discharging of Roving Objects in the Lunar Polar Regions. Journal of Spacecraft and Rockets, 2011, 48, 700-704.	1.9	25
150	Timeâ€dispersed ion signatures observed in the Martian magnetosphere by MAVEN. Geophysical Research Letters, 2015, 42, 8910-8916.	4.0	25
151	Understanding temporal and spatial variability of the lunar helium atmosphere using simultaneous observations from LRO, LADEE, and ARTEMIS. Icarus, 2016, 273, 45-52.	2.5	25
152	On Mars's Atmospheric Sputtering After MAVEN's First Martian Year of Measurements. Geophysical Research Letters, 2018, 45, 4685-4691.	4.0	25
153	The Influence of Interplanetary Magnetic Field Direction on Martian Crustal Magnetic Field Topology. Geophysical Research Letters, 2020, 47, e2020GL087757.	4.0	25
154	Daedalus: a low-flying spacecraft for in situ exploration of the lower thermosphere–ionosphere. Geoscientific Instrumentation, Methods and Data Systems, 2020, 9, 153-191.	1.6	25
155	Solarâ€Storm/Lunar Atmosphere Model (SSLAM): An overview of the effort and description of the driving storm environment. Journal of Geophysical Research, 2012, 117, .	3.3	24
156	A comparison of ARTEMIS observations and particle $\hat{a} \in \hat{b}$ in $\hat{a} \in \hat{c}$ ell modeling of the lunar photoelectron sheath in the terrestrial magnetotail. Geophysical Research Letters, 2012, 39, .	4.0	24
157	Modelâ€based constraints on the lunar exosphere derived from ARTEMIS pickup ion observations in the terrestrial magnetotail. Journal of Geophysical Research E: Planets, 2013, 118, 1135-1147.	3.6	24
158	Surface charging and electrostatic dust acceleration at the nucleus of comet 67P during periods of low activity. Planetary and Space Science, 2015, 119, 24-35.	1.7	24
159	Structure and Variability of the Martian Ion Composition Boundary Layer. Journal of Geophysical Research: Space Physics, 2018, 123, 8439-8458.	2.4	24
160	Parker Solar Probe Evidence for Scattering of Electrons in the Young Solar Wind by Narrowband Whistler-mode Waves. Astrophysical Journal Letters, 2021, 911, L29.	8.3	24
161	On wind-driven electrojets at magnetic cusps in the nightside ionosphere of Mars. Earth, Planets and Space, 2012, 64, 93-103.	2.5	23
162	ARTEMIS observations of lunar dayside plasma in the terrestrial magnetotail lobe. Journal of Geophysical Research: Space Physics, 2013, 118, 3042-3054.	2.4	23

#	Article	IF	CITATIONS
163	Anisotropic solar wind sputtering of the lunar surface induced by crustal magnetic anomalies. Geophysical Research Letters, 2014, 41, 4865-4872.	4.0	23
164	3D PIC SIMULATIONS OF COLLISIONLESS SHOCKS AT LUNAR MAGNETIC ANOMALIES AND THEIR ROLE IN FORMING LUNAR SWIRLS. Astrophysical Journal, 2016, 830, 146.	4.5	23
165	MARSIS Observations of the Martian Nightside Ionosphere During the September 2017 Solar Event. Geophysical Research Letters, 2018, 45, 7960-7967.	4.0	23
166	Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet. Astronomy and Astrophysics, 2021, 650, A13.	5.1	23
167	Mars's magnetotail: Nature's current sheet laboratory. Journal of Geophysical Research: Space Physics, 2017, 122, 5404-5417.	2.4	22
168	Cold Dense Ion Outflow Observed in the Martianâ€Induced Magnetotail by MAVEN. Geophysical Research Letters, 2018, 45, 5283-5289.	4.0	22
169	The Effects of Solar Wind Dynamic Pressure on the Structure of the Topside Ionosphere of Mars. Geophysical Research Letters, 2019, 46, 8652-8662.	4.0	22
170	Unusual Plasma and Particle Signatures at Mars and STEREO-A Related to CME–CME Interaction. Astrophysical Journal, 2019, 880, 18.	4.5	22
171	Whistler wave occurrence and the interaction with strahl electrons during the first encounter of Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A9.	5.1	22
172	Large-amplitude compressive "sawtooth―magnetic field oscillations in the Martian magnetosphere. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	21
173	ARTEMIS observations of the solar wind proton scattering function from lunar crustal magnetic anomalies. Journal of Geophysical Research E: Planets, 2017, 122, 771-783.	3. 6	21
174	MAVEN observations of a giant ionospheric flux rope near Mars resulting from interaction between the crustal and interplanetary draped magnetic fields. Journal of Geophysical Research: Space Physics, 2017, 122, 828-842.	2.4	21
175	Solar Wind Deflection by Mass Loading in the Martian Magnetosheath Based on MAVEN Observations. Geophysical Research Letters, 2018, 45, 2574-2579.	4.0	21
176	Effects of the Crustal Magnetic Fields and Changes in the IMF Orientation on the Magnetosphere of Mars: MAVEN Observations and LatHyS Results. Journal of Geophysical Research: Space Physics, 2018, 123, 5315-5333.	2.4	21
177	An Artificial Neural Network for Inferring Solar Wind Proxies at Mars. Geophysical Research Letters, 2018, 45, 10,855.	4.0	21
178	Thin Current Sheets of Subâ€ion Scales observed by MAVEN in the Martian Magnetotail. Geophysical Research Letters, 2019, 46, 6214-6222.	4.0	21
179	Characterizing Mars's Magnetotail Topology With Respect to the Upstream Interplanetary Magnetic Fields. Journal of Geophysical Research: Space Physics, 2020, 125, no.	2.4	21
180	The Evolution of Compressible Solar Wind Turbulence in the Inner Heliosphere: PSP, THEMIS, and MAVEN Observations. Astrophysical Journal, 2021, 919, 19.	4.5	21

#	Article	IF	CITATIONS
181	Solar Wind Turbulence Around Mars: Relation between the Energy Cascade Rate and the Proton Cyclotron Waves Activity. Astrophysical Journal, 2020, 902, 134.	4.5	21
182	Global distribution, structure, and solar wind control of low altitude current sheets at Mars. Icarus, 2010, 206, 64-73.	2.5	20
183	ARTEMIS observations of lunar pickup ions: Mass constraints on ion species. Journal of Geophysical Research E: Planets, 2013, 118, 1766-1774.	3.6	20
184	A hot flow anomaly at Mars. Geophysical Research Letters, 2015, 42, 9121-9127.	4.0	20
185	Reconnection in the Martian Magnetotail: Hallâ€ <scp>MHD</scp> With Embedded Particleâ€inâ€Cell Simulations. Journal of Geophysical Research: Space Physics, 2018, 123, 3742-3763.	2.4	20
186	The Induced Global Looping Magnetic Field on Mars. Astrophysical Journal Letters, 2019, 871, L27.	8.3	20
187	Ion Jets Within Current Sheets in the Martian Magnetosphere. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028576.	2.4	20
188	Narrowband oblique whistler-mode waves: comparing properties observed by Parker Solar Probe at & lt;0.3 AU and STEREO at 1 AU. Astronomy and Astrophysics, 2021, 650, A8.	5.1	20
189	Inferring the scale height of the lunar nightside double layer. Geophysical Research Letters, 2003, 30, .	4.0	19
190	The lunar photoelectron sheath: A change in trapping efficiency during a solar storm. Journal of Geophysical Research E: Planets, 2013, 118, 1114-1122.	3.6	19
191	MAVEN observation of an obliquely propagating lowâ€frequency wave upstream of Mars. Journal of Geophysical Research: Space Physics, 2016, 121, 2374-2389.	2.4	19
192	MAVEN observations on a hemispheric asymmetry of precipitating ions toward the Martian upper atmosphere according to the upstream solar wind electric field. Journal of Geophysical Research: Space Physics, 2017, 122, 1083-1101.	2.4	19
193	Responses of the Martian Magnetosphere to an Interplanetary Coronal Mass Ejection: MAVEN Observations and LatHyS Results. Geophysical Research Letters, 2018, 45, 7891-7900.	4.0	19
194	Localized Ionization Hypothesis for Transient Ionospheric Layers. Journal of Geophysical Research: Space Physics, 2019, 124, 4870-4880.	2.4	19
195	Variations in the Ionospheric Peak Altitude at Mars in Response to Dust Storms: 13 Years of Observations From the Mars Express Radar Sounder. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006092.	3.6	19
196	Magnetic Holes Upstream of the Martian Bow Shock: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027198.	2.4	19
197	Parker Solar Probe Evidence for the Absence of Whistlers Close to the Sun to Scatter Strahl and to Regulate Heat Flux. Astrophysical Journal Letters, 2022, 924, L33.	8.3	19
198	Particles and Photons as Drivers for Particle Release from the Surfaces of the Moon and Mercury. Space Science Reviews, 2022, 218, 1.	8.1	19

#	Article	IF	CITATIONS
199	Redistribution of lunar polar water to mid-latitudes and its role in forming an OH veneer. Planetary and Space Science, 2013, 89, 15-20.	1.7	18
200	LADEE/LDEX observations of lunar pickup ion distribution and variability. Geophysical Research Letters, 2016, 43, 3069-3077.	4.0	18
201	MAVEN observations of energyâ€time dispersed electron signatures in Martian crustal magnetic fields. Geophysical Research Letters, 2016, 43, 939-944.	4.0	18
202	ARTEMIS Observations of Solar Wind Proton Scattering off the Lunar Surface. Journal of Geophysical Research: Space Physics, 2018, 123, 5289-5299.	2.4	18
203	Dynamics of Intense Currents in the Solar Wind. Astrophysical Journal, 2018, 859, 95.	4.5	18
204	Evidence of Subprotonâ€Scale Magnetic Holes in the Venusian Magnetosheath. Geophysical Research Letters, 2021, 48, e2020GL090329.	4.0	18
205	Estimation of the spatial structure of a detached magnetic flux rope at Mars based on simultaneous MAVEN plasma and magnetic field observations. Geophysical Research Letters, 2015, 42, 8933-8941.	4.0	17
206	Lunar exospheric helium observations of LRO/LAMP coordinated with ARTEMIS. Icarus, 2016, 273, 36-44.	2.5	17
207	Martian ionosphere observed by MAVEN. 3. Influence of solar wind and IMF on upper ionosphere. Planetary and Space Science, 2018, 160, 56-65.	1.7	17
208	Properties of Plasma Waves Observed Upstream From Mars. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028221.	2.4	17
209	The selfâ€sputtered contribution to the lunar exosphere. Journal of Geophysical Research E: Planets, 2013, 118, 1934-1944.	3.6	16
210	Solar wind interaction effects on the magnetic fields around Mars: Consequences for interplanetary and crustal field measurements. Planetary and Space Science, 2015, 117, 15-23.	1.7	16
211	Shadowing and anisotropy of solar energetic ions at Mars measured by MAVEN during the March 2015 solar storm. Journal of Geophysical Research: Space Physics, 2016, 121, 2818-2829.	2.4	16
212	Evidence for Crustal Magnetic Field Control of Ions Precipitating Into the Upper Atmosphere of Mars. Journal of Geophysical Research: Space Physics, 2018, 123, 8572-8586.	2.4	16
213	Expansion and Shrinking of the Martian Topside Ionosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 9725-9738.	2.4	16
214	Magnetic Field in the Martian Magnetosheath and the Application as an IMF Clock Angle Proxy. Journal of Geophysical Research: Space Physics, 2019, 124, 4295-4313.	2.4	16
215	Electron Density Profiles in the Upper Ionosphere of Mars From 11 Years of MARSIS Data: Variability Due to Seasons, Solar Cycle, and Crustal Magnetic Fields. Journal of Geophysical Research: Space Physics, 2019, 124, 3057-3066.	2.4	16
216	Plasma Double Layers at the Boundary Between Venus and the Solar Wind. Geophysical Research Letters, 2020, 47, e2020GL090115.	4.0	16

#	Article	IF	CITATIONS
217	Search for Phobos and Deimos gas/dust tori using in situ observations from Mars Global Surveyor MAG/ER. Icarus, 2010, 206, 189-198.	2.5	15
218	Extended lunar precursor regions: Electronâ€wave interaction. Journal of Geophysical Research: Space Physics, 2014, 119, 9160-9173.	2.4	15
219	Spontaneous hot flow anomalies at Mars and Venus. Journal of Geophysical Research: Space Physics, 2017, 122, 9910-9923.	2.4	15
220	Comparison of Global Martian Plasma Models in the Context of MAVEN Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 3714-3726.	2.4	15
221	Recovery Timescales of the Dayside Martian Magnetosphere to IMF Variability. Geophysical Research Letters, 2019, 46, 10977-10986.	4.0	15
222	Mapping the Lunar Wake Potential Structure With ARTEMIS Data. Journal of Geophysical Research: Space Physics, 2019, 124, 3360-3377.	2.4	15
223	Variations in Nightside Magnetic Field Topology at Mars. Geophysical Research Letters, 2020, 47, e2020GL088921.	4.0	15
224	Parker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Nearâ€Sun Heliospheric Current Sheet. Geophysical Research Letters, 2022, 49, .	4.0	15
225	MAVEN observations of magnetic flux ropes with a strong field amplitude in the Martian magnetosheath during the ICME passage on 8 March 2015. Geophysical Research Letters, 2016, 43, 4816-4824.	4.0	14
226	Dynamic response of the Martian ionosphere to an interplanetary shock: Mars Express and MAVEN observations. Geophysical Research Letters, 2017, 44, 9116-9123.	4.0	14
227	Ionospheric Irregularities at Mars Probed by MARSIS Topside Sounding. Journal of Geophysical Research: Space Physics, 2018, 123, 1018-1030.	2.4	14
228	Solar Wind Interaction With the Martian Upper Atmosphere: Roles of the Cold Thermosphere and Hot Oxygen Corona. Journal of Geophysical Research: Space Physics, 2018, 123, 6639-6654.	2.4	14
229	Fieldâ€Aligned Electrostatic Potentials Above the Martian Exobase From MGS Electron Reflectometry: Structure and Variability. Journal of Geophysical Research E: Planets, 2018, 123, 67-92.	3.6	14
230	The Effects of Crustal Magnetic Fields and Solar EUV Flux on Ionopause Formation at Mars. Geophysical Research Letters, 2019, 46, 10257-10266.	4.0	14
231	The Sunward Electron Deficit: A Telltale Sign of the Sun's Electric Potential. Astrophysical Journal, 2021, 916, 16.	4.5	14
232	Ambipolar Electric Field and Potential in the Solar Wind Estimated from Electron Velocity Distribution Functions. Astrophysical Journal, 2021, 921, 83.	4.5	14
233	The Drivers of the Martian Bow Shock Location: A Statistical Analysis of Mars Atmosphere and Volatile EvolutioN and Mars Express Observations. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	14
234	A Statistical Investigation of Factors Influencing the Magnetotail Twist at Mars. Geophysical Research Letters, 2022, 49, .	4.0	14

#	Article	IF	CITATIONS
235	O ⁺ ion beams reflected below the Martian bow shock: MAVEN observations. Journal of Geophysical Research: Space Physics, 2016, 121, 3093-3107.	2.4	13
236	Photoemission and electrostatic potentials on the dayside lunar surface in the terrestrial magnetotail lobes. Geophysical Research Letters, 2017, 44, 5276-5282.	4.0	13
237	Variability of Upstream Proton Cyclotron Wave Properties and Occurrence at Mars Observed by MAVEN. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028616.	2.4	13
238	Response of the Martian ionosphere to solar activity including SEPs and ICMEs in a two-week period starting on 25 February 2015. Planetary and Space Science, 2017, 145, 28-37.	1.7	13
239	Lunar magnetic field measurements with a cubesat. Proceedings of SPIE, 2013, , .	0.8	12
240	Martian electron foreshock from MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 1531-1541.	2.4	12
241	Evidence for Neutralsâ€Foreshock Electrons Impact at Mars. Geophysical Research Letters, 2018, 45, 3768-3774.	4.0	12
242	The Structure of Martian Magnetosphere at the Dayside Terminator Region as Observed on MAVEN Spacecraft. Journal of Geophysical Research: Space Physics, 2018, 123, 2679-2695.	2.4	12
243	A Tenuous Lunar Ionosphere in the Geomagnetic Tail. Geophysical Research Letters, 2018, 45, 9450-9459.	4.0	12
244	Electron Bernstein waves and narrowband plasma waves near the electron cyclotron frequency in the near-Sun solar wind. Astronomy and Astrophysics, 2021, 650, A97.	5.1	12
245	Volatiles and Refractories in Surface-Bounded Exospheres in the Inner Solar System. Space Science Reviews, 2021, 217, 61.	8.1	12
246	Solar wind energy flux observations in the inner heliosphere: first results from Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A14.	5.1	12
247	Aurora in Martian Mini Magnetospheres. Geophysical Monograph Series, 0, , 123-132.	0.1	11
248	Statistical analysis of the reflection of incident O ⁺ pickup ions at Mars: MAVEN observations. Journal of Geophysical Research: Space Physics, 2017, 122, 4089-4101.	2.4	11
249	Martian Ionopause Boundary: Coincidence With Photoelectron Boundary and Response to Internal and External Drivers. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027409.	2.4	11
250	Kineticâ€Scale Turbulence in the Venusian Magnetosheath. Geophysical Research Letters, 2021, 48, e2020GL090783.	4.0	11
251	Lunar surface electric potential changes associated with traversals through the Earth's foreshock. Planetary and Space Science, 2011, 59, 1727-1743.	1.7	10
252	Lunar dayside current in the terrestrial lobe: ARTEMIS observations. Journal of Geophysical Research: Space Physics, 2014, 119, 3381-3391.	2.4	10

#	Article	IF	Citations
253	Continuous solar wind forcing knowledge: Providing continuous conditions at Mars with the WSAâ€ENLIL + Cone model. Journal of Geophysical Research: Space Physics, 2016, 121, 6207-6222.	2.4	10
254	The transient topside layer and associated current sheet in the ionosphere of Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 5579-5590.	2.4	10
255	Oneâ∈Hertz Waves at Mars: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 3460-3476.	2.4	10
256	lon Composition Boundary Layer Instabilities at Mars. Geophysical Research Letters, 2019, 46, 10303-10312.	4.0	10
257	On the confinement of lunar induced magnetic fields. Geophysical Research Letters, 2015, 42, 6931-6938.	4.0	9
258	Distribution and solar wind control of compressional solar windâ€magnetic anomaly interactions observed at the Moon by ARTEMIS. Journal of Geophysical Research: Space Physics, 2017, 122, 6240-6254.	2.4	9
259	Correlations between enhanced electron temperatures and electric field wave power in the Martian ionosphere. Geophysical Research Letters, 2018, 45, 493-501.	4.0	9
260	The Modulation of Solar Wind Hydrogen Deposition in the Martian Atmosphere by Foreshock Phenomena. Journal of Geophysical Research: Space Physics, 2019, 124, 7086-7097.	2.4	9
261	Variability of the Solar Wind Flow Asymmetry in the Martian Magnetosheath Observed by MAVEN. Geophysical Research Letters, 2020, 47, .	4.0	9
262	Global Ambipolar Potentials and Electric Fields at Mars Inferred From MAVEN Observations. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	9
263	Identification of magnetospheric particles that travel between spacecraft and their use to help obtain magnetospheric potential distributions. Journal of Geophysical Research, 1998, 103, 93-102.	3.3	8
264	A comet engulfs Mars: MAVEN observations of comet Siding Spring's influence on the Martian magnetosphere. Geophysical Research Letters, 2015, 42, 8810-8818.	4.0	8
265	Ion Heating in the Martian Ionosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 10,612.	2.4	8
266	The Penetration of Draped Magnetic Field Into the Martian Upper Ionosphere and Correlations With Upstream Solar Wind Dynamic Pressure. Journal of Geophysical Research: Space Physics, 2019, 124, 3021-3035.	2.4	8
267	Locally Generated ULF Waves in the Martian Magnetosphere: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 8707-8726.	2.4	8
268	Precipitating Solar Wind Hydrogen at Mars: Improved Calculations of the Backscatter and Albedo With MAVEN Observations. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006666.	3.6	8
269	Magnetic increases with central current sheets: observations with Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, All.	5.1	8
270	The Acceleration of Lunar Ions by Magnetic Forces in the Terrestrial Magnetotail Lobes. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027829.	2.4	8

#	Article	IF	CITATIONS
271	MAVEN Observations of Low Frequency Steepened Magnetosonic Waves and Associated Heating of the Martian Nightside Ionosphere. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029615.	2.4	8
272	Empirically Determined Auroral Electron Events at Mars—MAVEN Observations. Geophysical Research Letters, 2022, 49, .	4.0	8
273	Foreshock Cavities at Venus and Mars. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028023.	2.4	7
274	Nonstationary Quasiperpendicular Shock and Ion Reflection at Mars. Geophysical Research Letters, 2020, 47, e2020GL088309.	4.0	7
275	Reflected Protons in the Lunar Wake and Their Effects on Wake Potentials. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028154.	2.4	7
276	Investigating the Moon's Interaction With the Terrestrial Magnetotail Lobe Plasma. Geophysical Research Letters, 2021, 48, e2021GL093566.	4.0	7
277	The Electron Structure of the Solar Wind. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	7
278	The Dayside Ionopause of Mars: Solar Wind Interaction, Pressure Balance, and Comparisons With Venus. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006936.	3.6	7
279	Solitary Magnetic Structures Developed From Gyroâ€Resonance With Solar Wind Ions at Mars and Earth. Geophysical Research Letters, 2022, 49, .	4.0	7
280	Core Electron Heating by Triggered Ion Acoustic Waves in the Solar Wind. Astrophysical Journal Letters, 2022, 927, L15.	8.3	7
281	Discrete Aurora at Mars: Dependence on Upstream Solar Wind Conditions. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	7
282	Kinetic-scale Current Sheets in Near-Sun Solar Wind: Properties, Scale-dependent Features and Reconnection Onset. Astrophysical Journal, 2022, 929, 58.	4.5	7
283	Magnetization of the lunar crust. Journal of Geophysical Research, 2012, 117, .	3.3	6
284	Designing a sun-pointing Faraday cup for solar probe plus. AIP Conference Proceedings, 2013, , .	0.4	6
285	Anticipated electrical environment at Phobos: Nominal and solar storm conditions. Advances in Space Research, 2018, 62, 2199-2212.	2.6	6
286	MAVEN Case Studies of Plasma Dynamics in Lowâ€Altitude Crustal Magnetic Field at Mars 1: Dayside Ion Spikes Associated With Radial Crustal Magnetic Fields. Journal of Geophysical Research: Space Physics, 2019, 124, 1239-1261.	2.4	6
287	Variability of Precipitating Ion Fluxes During the September 2017 Event at Mars. Journal of Geophysical Research: Space Physics, 2019, 124, 420-432.	2.4	6
288	Influence of the Solar Wind Dynamic Pressure on the Ion Precipitation: MAVEN Observations and Simulation Results. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028183.	2.4	6

#	Article	IF	Citations
289	Plasma Convection in the Terrestrial Magnetotail Lobes Measured Near the Moon's Orbit. Geophysical Research Letters, 2020, 47, e2020GL090217.	4.0	6
290	The Magnetic Structure of the Subsolar MPB Current Layer From MAVEN Observations: Implications for the Hall Electric Force. Geophysical Research Letters, 2020, 47, e2020GL089230.	4.0	6
291	Crossâ€6hock Electrostatic Potentials at Mars Inferred From MAVEN Measurements. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029064.	2.4	6
292	Observations of Energized Electrons in the Martian Magnetosheath. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028984.	2.4	6
293	Electrostatic Waves and Electron Heating Observed Over Lunar Crustal Magnetic Anomalies. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028880.	2.4	6
294	The Structure of the Martian Quasiâ€Perpendicular Supercritical Shock as Seen by MAVEN. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028938.	2.4	6
295	MOSAIC: A Satellite Constellation to Enable Groundbreaking Mars Climate System Science and Prepare for Human Exploration. Planetary Science Journal, 2021, 2, 211.	3.6	6
296	A Fast Bow Shock Location Predictorâ€Estimator From 2D and 3D Analytical Models: Application to Mars and the MAVEN Mission. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	6
297	Structure and composition of the distant lunar exosphere: Constraints from ARTEMIS observations of ion acceleration in time-varying fields. Journal of Geophysical Research E: Planets, 2016, 121, 1102-1115.	3.6	5
298	Influence of Extreme Ultraviolet Irradiance Variations on the Precipitating Ion Flux From MAVEN Observations. Geophysical Research Letters, 2019, 46, 7761-7768.	4.0	5
299	Whistlers in the Solar Vicinity That Are Spiky in Time and Frequency. Astrophysical Journal, 2021, 908, 26.	4.5	5
300	LRO/LAMP observations of the lunar helium exosphere: constraints on thermal accommodation and outgassing rate. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4438-4451.	4.4	5
301	Using Solar Wind Helium to Probe the Structure and Seasonal Variability of the Martian Hydrogen Corona. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE007049.	3.6	5
302	Space Weather Observations With InSight. Geophysical Research Letters, 2021, 48, e2021GL095432.	4.0	5
303	Making Waves: Mirror Mode Structures Around Mars Observed by the MAVEN Spacecraft. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	5
304	A Statistical Study of the Moon's Magnetotail Plasma Environment. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	5
305	The Influence of Crustal Magnetic Fields on the Martian Bow Shock Location: A Statistical Analysis of MAVEN and Mars Express Observations. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	5
306	Whistler mode waves upstream of Saturn. Journal of Geophysical Research: Space Physics, 2017, 122, 227-234.	2.4	4

#	Article	IF	CITATIONS
307	Evidence for detection of energetic neutral atoms by LADEE. Planetary and Space Science, 2017, 139, 31-36.	1.7	4
308	Identifying Ultra Low Frequency Waves in the Lunar Plasma Environment Using Trajectory Analysis and Resonance Conditions. Journal of Geophysical Research: Space Physics, 2017, 122, 9983-9993.	2.4	4
309	Mars Express Observations of Cold Plasma Structures in the Martian Magnetotail. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028056.	2.4	4
310	Lunar Photoemission Yields Inferred From ARTEMIS Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006790.	3.6	4
311	Precipitating Solar Wind Hydrogen as Observed by the MAVEN Spacecraft: Distribution as a Function of Column Density, Altitude, and Solar Zenith Angle. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006725.	3.6	4
312	On the Solar Wind Proton Temperature Anisotropy at Mars' Orbital Location. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029438.	2.4	4
313	ARTEMIS Science Objectives., 2011,, 27-59.		4
314	First Results from ARTEMIS, a New Two-Spacecraft Lunar Mission: Counter-Streaming Plasma Populations in the Lunar Wake. , 2011, , 93-107.		4
315	Langmuir-Slow Extraordinary Mode Magnetic Signature Observations with Parker Solar Probe. Astrophysical Journal, 2022, 927, 95.	4.5	4
316	Formation Mechanisms of the Molecular Ion Polar Plume and Its Contribution to Ion Escape From Mars. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	4
317	Influence of Magnetic Fields on Precipitating Solar Wind Hydrogen at Mars. Geophysical Research Letters, 2022, 49, .	4.0	4
318	Magnetospheric electric fields from ion data. Geophysical Research Letters, 1999, 26, 1561-1564.	4.0	3
319	Regarding the possible generation of a lunar nightside exo-ionosphere. Icarus, 2011, 216, 169-172.	2.5	3
320	The electrostatic plasma environment of a small airless body under non-aligned plasma flow and UV conditions. Planetary and Space Science, 2015, 119, 111-120.	1.7	3
321	Correcting Parker Solar Probe Electron Measurements for Spacecraft Magnetic and Electric Fields. Journal of Geophysical Research: Space Physics, 2019, 124, 7369-7384.	2.4	3
322	Plasma Turbulence at Comet 67P/Churyumovâ€Gerasimenko: Rosetta Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028100.	2.4	3
323	Solar Wind and Interplanetary Magnetic Field Influence on Ultralow Frequency Waves and Reflected Ions Near the Moon. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027209.	2.4	3
324	Solar cycle and seasonal variability of the nightside ionosphere of Mars: Insights from five years of MAVEN observations. Icarus, 2023, 393, 114615.	2.5	3

#	Article	IF	Citations
325	Correction to "Electrons and magnetic fields in the lunar plasma wake― Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	2
326	Statistical Similarities Between WSAâ€ENLIL+Cone Model and MAVEN in Situ Observations From November 2014 to March 2016. Space Weather, 2018, 16, 157-171.	3.7	2
327	Distribution and variability of plasma perturbations observed by ARTEMIS near the Moon in the terrestrial magnetotail. Advances in Space Research, 2021, 68, 259-274.	2.6	2
328	Energetic Neutral Atoms near Mars: Predicted Distributions Based on MAVEN Measurements. Astrophysical Journal, 2022, 927, 11.	4.5	2
329	Plasma Parameters From Quasiâ€Thermal Noise Observed by Parker Solar Probe: A New Model for the Antenna Response. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	2
330	A Twoâ€Spacecraft Study of Mars' Induced Magnetosphere's Response to Upstream Conditions. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	2
331	Microâ€6cale Plasma Instabilities in the Interaction Region of the Solar Wind and the Martian Upper Atmosphere. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	2
332	Solar Wind Electrons Alphas and Protons (SWEAP) Science Operations Center initial design and implementation. Proceedings of SPIE, 2014, , .	0.8	1
333	Prolonged Lifetime of the Transient Ionized Layer in the Martian Atmosphere Caused by Comet Siding Spring. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006607.	3.6	1
334	ARTEMIS Observations of Lunar Nightside Surface Potentials in the Magnetotail Lobes: Evidence for Micrometeoroid Impact Charging. Geophysical Research Letters, 2021, 48, e2021GL094585.	4.0	1
335	Overview of Phobos/Deimos Regolith Ion Sample Mission (PRISM) concept., 2018,,.		1
336	Properties of Electron Distributions in the Martian Space Environment. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	1
337	MAVEN Observations of H ^{â^'} lons in the Martian Atmosphere. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	1
338	Call for Papers: Special Issue of Earth, Planets and Space (EPS) "Comparative Studies of the Plasma at Non-magnetized Planets/Moons― Earth, Planets and Space, 2010, 62, 663-663.	2.5	0
339	Space Weather Storm Responses at Mars: Lessons from A Weakly Magnetized Terrestrial Planet. Proceedings of the International Astronomical Union, 2016, 12, 211-217.	0.0	0
340	Appreciation of Peer Reviewers for 2017. Reviews of Geophysics, 2018, 56, 566-566.	23.0	0
341	Autonomous Detection and Disambiguation of Martian Ion Trails Using Geometric Signal Processing Techniques. , 2019, , .		0
342	Thank You to Our 2018 Peer Reviewers. Reviews of Geophysics, 2019, 57, 4-4.	23.0	0

J S HALEKAS

#	Article	lF	CITATIONS
343	Thank You to Our Peer Reviewers for 2019. Reviews of Geophysics, 2020, 58, no.	23.0	0
344	Thank You to Our Peer Reviewers for 2020. Reviews of Geophysics, 2021, 59, e2021RG000741.	23.0	0
345	Thank You to Our 2021 Peer Reviewers. Reviews of Geophysics, 2022, 60, .	23.0	0
346	Bipolar Electric Field Pulses in the Martian Magnetosheath and Solar Wind; Their Implication and Impact Accessed by System Scale Size. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	0