Thoralf Niendorf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1237390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biexponential diffusion attenuation in various states of brain tissue: Implications for diffusion-weighted imaging. Magnetic Resonance in Medicine, 1996, 36, 847-857.	1.9	534
2	Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magnetic Resonance in Medicine, 2006, 56, 167-176.	1.9	518
3	Blood Oxygen Level–Dependent Magnetic Resonance Imaging in Patients with Stress-Induced Angina. Circulation, 2003, 108, 2219-2223.	1.6	502
4	On the application of susceptibility-weighted ultra-fast low-angle RARE experiments in functional MR imaging. Magnetic Resonance in Medicine, 1999, 41, 1189-1198.	1.9	429
5	Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 138-152.	3.3	287
6	²³ Na Magnetic Resonance Imaging of Tissue Sodium. Hypertension, 2012, 59, 167-172.	1.3	223
7	Myocardial T1 and T2 mapping at 3ÂT: reference values, influencing factors and implications. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 53.	1.6	198
8	Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology, 2012, 79, 708-714.	1.5	190
9	Magnetic resonance thermometry: Methodology, pitfalls and practical solutions. International Journal of Hyperthermia, 2016, 32, 63-75.	1.1	173
10	Healthy and infarcted brain tissues studied at short diffusion times: The origins of apparent restriction and the reduction in apparent diffusion coefficient. NMR in Biomedicine, 1994, 7, 304-310.	1.6	139
11	Whole-Body MR Imaging in the German National Cohort: Rationale, Design, and Technical Background. Radiology, 2015, 277, 206-220.	3.6	137
12	T1 Mapping in Patients with Acute Myocardial Infarction. Journal of Cardiovascular Magnetic Resonance, 2003, 5, 353-359.	1.6	136
13	Highly parallel volumetric imaging with a 32-element RF coil array. Magnetic Resonance in Medicine, 2004, 52, 869-877.	1.9	133
14	Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Multiple Sclerosis Journal, 2012, 18, 1592-1599.	1.4	132
15	Comprehensive Cardiac Magnetic Resonance Imaging at 3.0 Tesla. Investigative Radiology, 2006, 41, 154-167.	3.5	124
16	Toll-like receptor 2 mediates microglia/brain macrophage MT1-MMP expression and glioma expansion. Neuro-Oncology, 2013, 15, 1457-1468.	0.6	115
17	Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla. Journal of Cardiovascular Magnetic Resonance, 2010, 12, 67.	1.6	104
18	How bold is blood oxygenation levelâ€dependent (BOLD) magnetic resonance imaging of the kidney? Opportunities, challenges and future directions. Acta Physiologica, 2015, 213, 19-38.	1.8	100

#	Article	IF	CITATIONS
19	GDNF mediates glioblastoma-induced microglia attraction but not astrogliosis. Acta Neuropathologica, 2013, 125, 609-620.	3.9	97
20	Modular 32-channel transceiver coil array for cardiac MRI at 7.0T. Magnetic Resonance in Medicine, 2014, 72, 276-290.	1.9	90
21	Design and Evaluation of a Hybrid Radiofrequency Applicator for Magnetic Resonance Imaging and RF Induced Hyperthermia: Electromagnetic Field Simulations up to 14.0 Tesla and Proof-of-Concept at 7.0 Tesla. PLoS ONE, 2013, 8, e61661.	1.1	89
22	Influence of high magnetic field strengths and parallel acquisition strategies on image quality in cardiac 2D CINE magnetic resonance imaging: comparison of 1.5 T vs. 3.0ÂT. European Radiology, 2005, 15, 1586-1597.	2.3	85
23	Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning – an ultrahigh-field MR pilot study. European Radiology, 2015, 25, 122-131.	2.3	84
24	Twoâ€Đimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 T: Design, evaluation, and application. Journal of Magnetic Resonance Imaging, 2012, 36, 847-857.	1.9	76
25	Skin sodium measured with ²³ Na MRI at 7.0 T. NMR in Biomedicine, 2015, 28, 54-62.	1.6	74
26	16â€channel bow tie antenna transceiver array for cardiac MR at 7.0 tesla. Magnetic Resonance in Medicine, 2016, 75, 2553-2565.	1.9	72
27	Changes in organic solutes, volume, energy state, and metabolism associated with osmotic stress in a glial cell line: A multinuclear NMR study. Neurochemical Research, 1995, 20, 793-802.	1.6	71
28	Feasibility of Cardiac Gating Free of Interference With Electro-Magnetic Fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla Using an MR-Stethoscope. Investigative Radiology, 2009, 44, 539-547.	3.5	68
29	Multiple Sclerosis Lesions and Irreversible Brain Tissue Damage. Archives of Neurology, 2012, 69, 739-45.	4.9	68
30	Comparison of three multichannel transmit/receive radiofrequency coil configurations for anatomic and functional cardiac MRI at 7.0T: implications for clinical imaging. European Radiology, 2012, 22, 2211-2220.	2.3	68
31	Rapid Volumetric MRI Using Parallel Imaging With Order-of-Magnitude Accelerations and a 32-Element RF Coil Array. Academic Radiology, 2005, 12, 626-635.	1.3	67
32	Detection of apparent restricted diffusion in healthy rat brain at short diffusion times. Magnetic Resonance in Medicine, 1994, 32, 672-677.	1.9	65
33	A Feasibility Study of Contrast Enhancement of Acute Myocardial Infarction in Multislice Computed Tomography. Investigative Radiology, 2005, 40, 700-704.	3.5	64
34	Detailing the Relation Between Renal T2* and Renal Tissue pO2 Using an Integrated Approach of Parametric Magnetic Resonance Imaging and Invasive Physiological Measurements. Investigative Radiology, 2014, 49, 547-560.	3.5	64
35	Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises. European Radiology, 2010, 20, 2806-2816.	2.3	62
36	Progress and promises of human cardiac magnetic resonance at ultrahigh fields: A physics perspective. Journal of Magnetic Resonance, 2013, 229, 208-222.	1.2	61

#	Article	IF	CITATIONS
37	Consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2020, 33, 177-195.	1.1	61
38	Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla—a pilot study. European Radiology, 2010, 20, 2844-2852.	2.3	60
39	Regulation of body weight and energy homeostasis by neuronal cell adhesion molecule 1. Nature Neuroscience, 2017, 20, 1096-1103.	7.1	59
40	Parallel imaging in cardiovascular MRI: methods and applications. NMR in Biomedicine, 2006, 19, 325-341.	1.6	58
41	On the RF heating of coronary stents at 7.0 Tesla MRI. Magnetic Resonance in Medicine, 2015, 74, 999-1010.	1.9	58
42	Claudin peptidomimetics modulate tissue barriers for enhanced drug delivery. Annals of the New York Academy of Sciences, 2017, 1397, 169-184.	1.8	58
43	Temporal and regional changes during focal ischemia in rat brain studied by proton spectroscopic imaging and quantitative diffusion NMR imaging. Magnetic Resonance in Medicine, 1998, 39, 878-888.	1.9	55
44	Contrast–dose relation in first-pass myocardial MR perfusion imaging. Journal of Magnetic Resonance Imaging, 2007, 25, 1131-1135.	1.9	55
45	Blood Oxygen Level–Dependent MRI of Tissue Oxygenation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1408-1413.	1.1	52
46	32-element receiver-coil array for cardiac imaging. Magnetic Resonance in Medicine, 2006, 55, 1142-1149.	1.9	52
47	Periventricular venous density in multiple sclerosis is inversely associated with T2 lesion count: a 7 Tesla MRI study. Multiple Sclerosis Journal, 2013, 19, 316-325.	1.4	52
48	High Temporal Resolution Parametric MRI Monitoring of the Initial Ischemia/Reperfusion Phase in Experimental Acute Kidney Injury. PLoS ONE, 2013, 8, e57411.	1.1	51
49	Development of clinical simultaneous SPECT/MRI. British Journal of Radiology, 2018, 91, 20160690.	1.0	51
50	Design and application of a fourâ€channel transmit/receive surface coil for functional cardiac imaging at 7T. Journal of Magnetic Resonance Imaging, 2011, 33, 736-741.	1.9	50
51	Comparison of left ventricular function assessment using phonocardiogram- and electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5ÂT and 3.0ÂT. European Radiology, 2010, 20, 1344-1355.	2.3	49
52	Ultrahigh-Field MRI in Human Ischemic Stroke – a 7 Tesla Study. PLoS ONE, 2012, 7, e37631.	1.1	48
53	Widespread inflammation in CLIPPERS syndrome indicated by autopsy and ultra-high-field 7T MRI. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e226.	3.1	47
54	Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0T. European Journal of Radiology, 2013, 82, 752-759.	1.2	46

#	Article	IF	CITATIONS
55	Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications. European Radiology, 2008, 18, 87-102.	2.3	45
56	Perfluorocarbon Particle Size Influences Magnetic Resonance Signal and Immunological Properties of Dendritic Cells. PLoS ONE, 2011, 6, e21981.	1.1	45
57	The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Frontiers in Systems Neuroscience, 2020, 14, 8.	1.2	45
58	Cortical areas and the control of self-determined finger movements. NeuroReport, 1998, 9, 3171-3176.	0.6	44
59	Detailing Radio Frequency Heating Induced by Coronary Stents: A 7.0 Tesla Magnetic Resonance Study. PLoS ONE, 2012, 7, e49963.	1.1	43
60	Assessment of the right ventricle with cardiovascular magnetic resonance at 7 Tesla. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 23.	1.6	42
61	Identical lesion morphology in primary progressive and relapsing–remitting MS –an ultrahigh field MRI study. Multiple Sclerosis Journal, 2014, 20, 1866-1871.	1.4	40
62	W(h)ither human cardiac and body magnetic resonance at ultrahigh fields? technical advances, practical considerations, applications, and clinical opportunities. NMR in Biomedicine, 2016, 29, 1173-1197.	1.6	40
63	BRAVE-NET: Fully Automated Arterial Brain Vessel Segmentation in Patients With Cerebrovascular Disease. Frontiers in Artificial Intelligence, 2020, 3, 552258.	2.0	40
64	Incidence of apparent restricted diffusion in three different models of cerebral infarction. Magnetic Resonance Imaging, 1994, 12, 1175-1182.	1.0	39
65	Visualizing Brain Inflammation with a Shingled-Leg Radio-Frequency Head Probe for 19F/1H MRI. Scientific Reports, 2013, 3, 1280.	1.6	39
66	Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz). Radiation Oncology, 2015, 10, 201.	1.2	39
67	Rapid Parametric Mapping of the Longitudinal Relaxation Time T1 Using Two-Dimensional Variable Flip Angle Magnetic Resonance Imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla. PLoS ONE, 2014, 9, e91318.	1.1	38
68	MRI phase changes in multiple sclerosis vs neuromyelitis optica lesions at 7T. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e259.	3.1	38
69	Acoustic Method for Synchronization of Magnetic Resonance Imaging (MRI). Acta Acustica United With Acustica, 2008, 94, 148-155.	0.8	36
70	Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management. EPMA Journal, 2015, 6, 16.	3.3	36
71	Linking nonâ€invasive parametric <scp>MRI</scp> with invasive physiological measurements (<scp>MR</scp> â€ <scp>PHYSIOL</scp>): towards a hybrid and integrated approach for investigation of acute kidney injury in rats. Acta Physiologica, 2013, 207, 673-689.	1.8	35
72	Advancing Cardiovascular, Neurovascular, and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology. Frontiers in Pharmacology, 2015, 6, 255.	1.6	35

#	Article	IF	CITATIONS
73	High spatial resolution inÂvivo magnetic resonance imaging of the human eye, orbit, nervus opticus and optic nerve sheath at 7.0 Tesla. Experimental Eye Research, 2014, 125, 89-94.	1.2	34
74	Enhanced Fluorine-19 MRI Sensitivity using a Cryogenic Radiofrequency Probe: Technical Developments and Ex Vivo Demonstration in a Mouse Model of Neuroinflammation. Scientific Reports, 2017, 7, 9808.	1.6	34
75	High Spatial Resolution and Temporally Resolved T2* Mapping of Normal Human Myocardium at 7.0 Tesla: An Ultrahigh Field Magnetic Resonance Feasibility Study. PLoS ONE, 2012, 7, e52324.	1.1	33
76	Status of the Neonatal Rat Brain after NMDA-Induced Excitotoxic Injury as Measured by MRI, MRS and Metabolic Imaging. , 1996, 9, 84-92.		32
77	Ophthalmic Magnetic Resonance Imaging at 7 T Using a 6-Channel Transceiver Radiofrequency Coil Array in Healthy Subjects and Patients With Intraocular Masses. Investigative Radiology, 2014, 49, 260-270.	3.5	32
78	Functional and Morphological Cardiac Magnetic Resonance Imaging of Mice Using a Cryogenic Quadrature Radiofrequency Coil. PLoS ONE, 2012, 7, e42383.	1.1	32
79	Single―or dualâ€bolus approach for the assessment of myocardial perfusion reserve in quantitative MR perfusion imaging. Magnetic Resonance in Medicine, 2008, 59, 1373-1377.	1.9	31
80	Time-Resolved 3D MR Angiography of the Foot at 3 T in Patients with Peripheral Arterial Disease. American Journal of Roentgenology, 2008, 190, W360-W364.	1.0	31
81	Identification of Cellular Infiltrates during Early Stages of Brain Inflammation with Magnetic Resonance Microscopy. PLoS ONE, 2012, 7, e32796.	1.1	30
82	Interpretation of DW-NMR data: Dependence on experimental conditions. NMR in Biomedicine, 1995, 8, 280-288.	1.6	29
83	Early effects of an xâ€ŧay contrast medium on renal T ₂ */T ₂ <scp>MRI</scp> as compared to shortâ€ŧerm hyperoxia, hypoxia and aortic occlusion in rats. Acta Physiologica, 2013, 208, 202-213.	1.8	29
84	Detailing renal hemodynamics and oxygenation in rats by a combined near-infrared spectroscopy and invasive probe approach. Biomedical Optics Express, 2015, 6, 309.	1.5	29
85	Brain iron accumulation in Wilson's disease: A longitudinal imaging case study during anticopper treatment using 7.0T MRI and transcranial sonography. Journal of Magnetic Resonance Imaging, 2018, 47, 282-285.	1.9	29
86	High Spatial Resolution Cardiovascular Magnetic Resonance at 7.0 Tesla in Patients with Hypertrophic Cardiomyopathy – First Experiences: Lesson Learned from 7.0 Tesla. PLoS ONE, 2016, 11, e0148066.	1.1	28
87	Electrodynamics and radiofrequency antenna concepts for human magnetic resonance at 23.5ÂT (1ÂGHz) and beyond. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 641-656.	1.1	28
88	SPECT/MRI INSERT Compatibility: Assessment, Solutions, and Design Guidelines. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2, 369-379.	2.7	28
89	Corrections of myocardial tissue sodium concentration measurements in human cardiac ²³ Na MRI at 7 Tesla. Magnetic Resonance in Medicine, 2019, 82, 159-173.	1.9	28
90	Sodium MRI of the human heart at 7.0 T: preliminary results. NMR in Biomedicine, 2015, 28, 967-975.	1.6	26

#	Article	IF	CITATIONS
91	The traveling heads: multicenter brain imaging at 7 Tesla. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 399-415.	1.1	26
92	A synthetic epoxyeicosatrienoic acid analogue prevents the initiation of ischemic acute kidney injury. Acta Physiologica, 2019, 227, e13297.	1.8	26
93	Short breath-hold, volumetric coronary MR angiography employing steady-state free precession in conjunction with parallel imaging. Magnetic Resonance in Medicine, 2005, 53, 885-894.	1.9	25
94	Detailing magnetic field strength dependence and segmental artifact distribution of myocardial effective transverse relaxation rate at 1.5, 3.0, and 7.0 T. Magnetic Resonance in Medicine, 2014, 71, 2224-2230.	1.9	25
95	Eight-channel transceiver RF coil array tailored for ¹ H/ ¹⁹ F MR of the human knee and fluorinated drugs at 7.0 T. NMR in Biomedicine, 2015, 28, 726-737.	1.6	25
96	High Field Cardiac Magnetic Resonance Imaging. Circulation: Cardiovascular Imaging, 2017, 10, .	1.3	25
97	Characterization of myocardial viability using MR and CT imaging. European Radiology, 2007, 17, 1433-1444.	2.3	24
98	Size-Induced Variations in Lattice Dimension, Photoluminescence, and Photocatalytic Activity of ZnO Nanorods. Journal of Nanoscience and Nanotechnology, 2008, 8, 1301-1306.	0.9	24
99	Diffusion-Sensitized Ophthalmic Magnetic Resonance Imaging Free of Geometric Distortion at 3.0 and 7.0 T. Investigative Radiology, 2015, 50, 309-321.	3.5	24
100	Enlargement of Cerebral Ventricles as an Early Indicator of Encephalomyelitis. PLoS ONE, 2013, 8, e72841.	1.1	22
101	Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?. PLoS ONE, 2016, 11, e0161863.	1.1	22
102	Myocardial <i>T</i> mapping free of distortion using susceptibilityâ€weighted fast spinâ€echo imaging: A feasibility study at 1.5 T and 3.0 T. Magnetic Resonance in Medicine, 2009, 62, 822-828.	1.9	21
103	Detailing the use of magnetohydrodynamic effects for synchronization of MRI with the cardiac cycle: A feasibility study. Journal of Magnetic Resonance Imaging, 2012, 36, 364-372.	1.9	21
104	Ultrahigh field magnetic resonance and colour Doppler real-time fusion imaging of the orbit – a hybrid tool for assessment of choroidal melanoma. European Radiology, 2014, 24, 1112-1117.	2.3	21
105	Magnetic resonance safety and compatibility of tantalum markers used in proton beam therapy for intraocular tumors: A 7.0 Tesla study. Magnetic Resonance in Medicine, 2017, 78, 1533-1546.	1.9	21
106	Myocardial effective transverse relaxation time T2* Correlates with left ventricular wall thickness: A 7.0 T MRI study. Magnetic Resonance in Medicine, 2017, 77, 2381-2389.	1.9	21
107	Somatosensory BOLD fMRI reveals close link between salient blood pressure changes and the murine neuromatrix. NeuroImage, 2018, 172, 562-574.	2.1	21
108	7T MRI in natalizumab-associated PML and ongoing MS disease activity. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e171.	3.1	20

#	Article	IF	CITATIONS
109	Towards a five-minute comprehensive cardiac MR examination using highly accelerated parallel imaging with a 32-element coil array: Feasibility and initial comparative evaluation. Journal of Magnetic Resonance Imaging, 2013, 38, 180-188.	1.9	18
110	Cardiomyocyte-derived CXCL12 is not involved in cardiogenesis but plays a crucial role in myocardial infarction. Journal of Molecular Medicine, 2016, 94, 1005-1014.	1.7	18
111	Assessment of Blood Brain Barrier Leakage with Gadolinium-Enhanced MRI. Methods in Molecular Biology, 2018, 1718, 395-408.	0.4	18
112	Ophthalmic Magnetic Resonance Imaging: Where Are We (Heading To)?. Current Eye Research, 2021, 46, 1251-1270.	0.7	18
113	Antibodies to the α1-Adrenergic Receptor Cause Vascular Impairments in Rat Brain as Demonstrated by Magnetic Resonance Angiography. PLoS ONE, 2012, 7, e41602.	1.1	18
114	Comparison of image quality in magnetic resonance imaging of the knee at 1.5 and 3.0 Tesla using 32-channel receiver coils. European Radiology, 2008, 18, 2258-2264.	2.3	17
115	Detailing intra-lesional venous lumen shrinking in multiple sclerosis investigated by sFLAIR MRI at 7-T. Journal of Neurology, 2014, 261, 2032-2036.	1.8	17
116	Anatomic and pathological characterization of choroidal melanoma using multimodal imaging. Melanoma Research, 2015, 25, 252-258.	0.6	17
117	Retrospectively-gated CINE 23Na imaging of the heart at 7.0 Tesla using density-adapted 3D projection reconstruction. Magnetic Resonance Imaging, 2015, 33, 1091-1097.	1.0	17
118	Open Source 3D Multipurpose Measurement System with Submillimetre Fidelity and First Application in Magnetic Resonance. Scientific Reports, 2017, 7, 13452.	1.6	17
119	The choice of embedding media affects image quality, tissue R ₂ [*] , and susceptibility behaviors in postâ€mortem brain MR microscopy at 7.0T. Magnetic Resonance in Medicine, 2019, 81, 2688-2701.	1.9	17
120	Solving the Time- and Frequency-Multiplexed Problem of Constrained Radiofrequency Induced Hyperthermia. Cancers, 2020, 12, 1072.	1.7	17
121	Radiofrequency applicator concepts for thermal magnetic resonance of brain tumors at 297 MHz (7.0ÂTesla). International Journal of Hyperthermia, 2020, 37, 549-563.	1.1	17
122	Sustainable low-field cardiovascular magnetic resonance in changing healthcare systems. European Heart Journal Cardiovascular Imaging, 2022, 23, e246-e260.	0.5	17
123	Magnetic Resonance Phase Alterations in Multiple Sclerosis Patients with Short and Long Disease Duration. PLoS ONE, 2015, 10, e0128386.	1.1	16
124	Cardiorenal sodium MRI at 7.0 Tesla using a 4/4 channel ¹ H/ ²³ Na radiofrequency antenna array. Magnetic Resonance in Medicine, 2019, 82, 2343-2356.	1.9	16
125	Fluorine-19 MRI at 21.1ÂT: enhanced spin–lattice relaxation of perfluoro-15-crown-5-ether and sensitivity as demonstrated in ex vivo murine neuroinflammation. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2019, 32, 37-49.	1.1	16
126	Brain Iron and Metabolic Abnormalities in C19orf12 Mutation Carriers: A 7.0 Tesla MRI Study in Mitochondrial Membrane Protein–Associated Neurodegeneration. Movement Disorders, 2020, 35, 142-150.	2.2	16

#	Article	IF	CITATIONS
127	Probing renal blood volume with magnetic resonance imaging. Acta Physiologica, 2020, 228, e13435.	1.8	16
128	Experimental MRI Monitoring of Renal Blood Volume Fraction Variations En Route to Renal Magnetic Resonance Oximetry. Tomography, 2017, 3, 188-200.	0.8	16
129	Isometric handgrip exercise during cardiovascular magnetic resonance imaging: Setâ€up and cardiovascular effects. Journal of Magnetic Resonance Imaging, 2013, 37, 1342-1350.	1.9	15
130	7â€Tesla <scp>Magnetic Resonance Imaging</scp> for Brain Iron Quantification in Homozygous and Heterozygous <i><scp>PANK</scp>2</i> Mutation Carriers. Movement Disorders Clinical Practice, 2014, 1, 329-335.	0.8	15
131	Anchoring Dipalmitoyl Phosphoethanolamine to Nanoparticles Boosts Cellular Uptake and Fluorine-19 Magnetic Resonance Signal. Scientific Reports, 2015, 5, 8427.	1.6	15
132	Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception. Scientific Reports, 2016, 6, 17230.	1.6	15
133	Quantitative 7T MRI does not detect occult brain damage in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e541.	3.1	15
134	Lung Purinoceptor Activation Triggers Ventilator-Induced Brain Injury. Critical Care Medicine, 2019, 47, e911-e918.	0.4	15
135	Controlled Release of Therapeutics from Thermoresponsive Nanogels: A Thermal Magnetic Resonance Feasibility Study. Cancers, 2020, 12, 1380.	1.7	15
136	Adaptation of Cellular Metabolism to Anisosmotic Conditions in a Glial Cell Line, as Assessed by ¹³ C-NMR Spectroscopy. Developmental Neuroscience, 1996, 18, 449-459.	1.0	14
137	Electrocardiogram in an MRI Environment: Clinical Needs, Practical Considerations, Safety Implications, Technical Solutions and Future Directions. , 0, , .		14
138	Cerebral blood volume estimation by ferumoxytol-enhanced steady-state MRI at 9.4 T reveals microvascular impact of α1 -adrenergic receptor antibodies. NMR in Biomedicine, 2014, 27, 1085-1093.	1.6	14
139	On the Subjective Acceptance during Cardiovascular Magnetic Resonance Imaging at 7.0 Tesla. PLoS ONE, 2015, 10, e0117095.	1.1	14
140	From ultrahigh to extreme field magnetic resonance: where physics, biology and medicine meet. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 309-311.	1.1	14
141	Multiband diffusionâ€weighted MRI of the eye and orbit free of geometric distortions using a RAREâ€EPI hybrid. NMR in Biomedicine, 2018, 31, e3872.	1.6	14
142	7 Tesla MRI of Balo's concentric sclerosis versus multiple sclerosis lesions. Annals of Clinical and Translational Neurology, 2018, 5, 900-912.	1.7	14
143	Toward 19F magnetic resonance thermometry: spin–lattice and spin–spin-relaxation times and temperature dependence of fluorinated drugs at 9.4 T. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2019, 32, 51-61.	1.1	14
144	Performance of compressed sensing for fluorineâ€19 magnetic resonance imaging at low signalâ€toâ€noise ratio conditions. Magnetic Resonance in Medicine, 2020, 84, 592-608.	1.9	14

#	Article	IF	CITATIONS
145	Feasibility of k-t BLAST For BOLD fMRI With a Spin-Echo Based Acquisition at 3 T and 7 T. Investigative Radiology, 2009, 44, 495-502.	3.5	13
146	Vibrationâ€synchronized magnetic resonance imaging for the detection of myocardial elasticity changes. Magnetic Resonance in Medicine, 2012, 67, 919-924.	1.9	13
147	Progressive Multifocal Leukoencephalopathy in a Multiple Sclerosis Patient Diagnosed after Switching from Natalizumab to Fingolimod. Case Reports in Neurological Medicine, 2016, 2016, 1-8.	0.3	13
148	Moyamoya Vessel Pathology Imaged by Ultra–High-Field Magnetic Resonance Imaging at 7.0 T. Journal of Stroke and Cerebrovascular Diseases, 2016, 25, 1544-1551.	0.7	13
149	Radiofrequency applicator concepts for simultaneous MR imaging and hyperthermia treatment of glioblastoma multiforme. Current Directions in Biomedical Engineering, 2017, 3, 473-477.	0.2	13
150	Wideband Selfâ€Grounded Bowâ€Tie Antenna for Thermal MR. NMR in Biomedicine, 2020, 33, e4274.	1.6	13
151	Transient enlargement of brain ventricles during relapsing-remitting multiple sclerosis and experimental autoimmune encephalomyelitis. JCI Insight, 2020, 5, .	2.3	13
152	An uncertainty-aware, shareable, and transparent neural network architecture for brain-age modeling. Science Advances, 2022, 8, eabg9471.	4.7	13
153	Acute effects of ferumoxytol on regulation of renal hemodynamics and oxygenation. Scientific Reports, 2016, 6, 29965.	1.6	12
154	Monitoring Dendritic Cell Migration using ¹⁹ F / ¹ H Magnetic Resonance Imaging. Journal of Visualized Experiments, 2013, , e50251.	0.2	11
155	Google maps for tissues: Multiscale imaging of biological systems and disease. Acta Physiologica, 2020, 228, e13392.	1.8	11
156	Continuous diffusion spectrum computation for diffusion-weighted magnetic resonance imaging of the kidney tubule system. Quantitative Imaging in Medicine and Surgery, 2021, 11, 3098-3119.	1.1	11
157	Characterization of Phase-Based Methods Used for Transmission Field Uniformity Mapping: A Magnetic Resonance Study at 3.0 T and 7.0 T. PLoS ONE, 2013, 8, e57982.	1.1	11
158	Ultrahigh-field MPRAGE Magnetic Resonance Angiography at 7.0T in patients with cerebrovascular disease. European Journal of Radiology, 2015, 84, 2613-2617.	1.2	10
159	Labeling of cell therapies: How can we get it right?. Oncolmmunology, 2017, 6, e1345403.	2.1	10
160	<i>In vivo</i> detection of teriflunomide-derived fluorine signal during neuroinflammation using fluorine MR spectroscopy. Theranostics, 2021, 11, 2490-2504.	4.6	10
161	Magnetic Resonance Imaging (MRI) Analysis of Ischemia/Reperfusion in Experimental Acute Renal Injury. Methods in Molecular Biology, 2016, 1397, 113-127.	0.4	10
162	Magnetic field–induced interactions between phones containing magnets and cardiovascular implantable electronic devices: Flip it to be safe?. Heart Rhythm, 2022, 19, 372-380.	0.3	10

#	Article	IF	CITATIONS
163	Simultaneous dual contrast weighting using double echo rapid acquisition with relaxation enhancement (RARE) imaging. Magnetic Resonance in Medicine, 2014, 72, 1590-1598.	1.9	9
164	Neuromyelitis optica does not impact periventricular venous density versus healthy controls: a 7.0ÂTesla MRI clinical study. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 535-541.	1.1	9
165	High peak and high average radiofrequency power transmit/receive switch for thermal magnetic resonance. Magnetic Resonance in Medicine, 2018, 80, 2246-2255.	1.9	9
166	Assessment of Renal Hemodynamics and Oxygenation by Simultaneous Magnetic Resonance Imaging (MRI) and Quantitative Invasive Physiological Measurements. Methods in Molecular Biology, 2016, 1397, 129-154.	0.4	9
167	Pentafluorosulfanyl (SF ₅) as a Superior ¹⁹ F Magnetic Resonance Reporter Group: Signal Detection and Biological Activity of Teriflunomide Derivatives. ACS Sensors, 2021, 6, 3948-3956.	4.0	9
168	Myocardial T2* Mapping with Ultrahigh Field Magnetic Resonance: Physics and Frontier Applications. Frontiers in Physics, 2017, 5, .	1.0	8
169	Design, Implementation, Evaluation and Application of a 32-Channel Radio Frequency Signal Generator for Thermal Magnetic Resonance Based Anti-Cancer Treatment. Cancers, 2020, 12, 1720.	1.7	8
170	Multi-Channel RF Supervision Module for Thermal Magnetic Resonance Based Cancer Therapy. Cancers, 2021, 13, 1001.	1.7	8
171	Ultra-fast low-angle rapid acquisition and relaxation enhancement (UFLARE) in patients with epilepsy. Neuroradiology, 2001, 43, 1040-1045.	1.1	7
172	Comparison of kâ€ŧ SENSE/kâ€ŧ BLAST with conventional SENSE applied to BOLD fMRI. Journal of Magnetic Resonance Imaging, 2010, 32, 235-241.	1.9	7
173	Design, construction, and evaluation of a dynamic MR compatible cardiac left ventricle model. Medical Physics, 2012, 39, 4800-4806.	1.6	7
174	ERK1 as a Therapeutic Target for Dendritic Cell Vaccination against High-Grade Gliomas. Molecular Cancer Therapeutics, 2016, 15, 1975-1987.	1.9	7
175	Current T1 and T2 mapping techniques applied with simple thresholds cannot discriminate acute from chronic myocadial infarction on an individual patient basis: a pilot study. BMC Medical Imaging, 2016, 16, 35.	1.4	7
176	Myocardial Effective Transverse Relaxation Time T 2 * is Elevated in Hypertrophic Cardiomyopathy: A 7.0 T Magnetic Resonance Imaging Study. Scientific Reports, 2018, 8, 3974.	1.6	7
177	Special issue on fluorine-19 magnetic resonance: technical solutions, research promises and frontier applications. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2019, 32, 1-3.	1.1	7
178	Cardiac Magnetic Resonance Imaging at 7 Tesla. Journal of Visualized Experiments, 2019, , .	0.2	7
179	In vivo potassium MRI of the human heart. Magnetic Resonance in Medicine, 2020, 83, 203-213.	1.9	7
180	Patient-Specific Planning for Thermal Magnetic Resonance of Glioblastoma Multiforme. Cancers, 2021, 13, 1867.	1.7	7

11

#	Article	IF	CITATIONS
181	32â€Channel selfâ€grounded bowâ€tie transceiver array for cardiac MR at 7.0T. Magnetic Resonance in Medicine, 2021, 86, 2862-2879.	1.9	7
182	Reliable kidney size determination by magnetic resonance imaging in pathophysiological settings. Acta Physiologica, 2021, 233, e13701.	1.8	7
183	Millimeter spatial resolution in vivo sodium MRI of the human eye at 7 T using a dedicated radiofrequency transceiver array. Magnetic Resonance in Medicine, 2018, 80, 672-684.	1.9	6
184	Gadolinium Deposition in the Brain after Contrast-enhanced MRI: Are the Data Valid?. Radiology, 2018, 288, 630-632.	3.6	6
185	Functional Imaging Using Fluorine (19F) MR Methods: Basic Concepts. Methods in Molecular Biology, 2021, 2216, 279-299.	0.4	6
186	What Do BOLD MR Imaging Changes in Donors' Remaining Kidneys Tell Us?. Radiology, 2016, 281, 653-655.	3.6	5
187	Cardiac MRI in Small Animals. Methods in Molecular Biology, 2018, 1718, 269-284.	0.4	5
188	Quantitative Assessment of Renal Perfusion and Oxygenation by Invasive Probes: Basic Concepts. Methods in Molecular Biology, 2021, 2216, 89-107.	0.4	5
189	Current Applications and Future Development of Magnetic Resonance Fingerprinting in Diagnosis, Characterization, and Response Monitoring in Cancer. Cancers, 2021, 13, 4742.	1.7	5
190	B ₁ inhomogeneity correction of RARE MRI with transceive surface radiofrequency probes. Magnetic Resonance in Medicine, 2020, 84, 2684-2701.	1.9	5
191	B ₁ inhomogeneity correction of RARE MRI at low SNR: Quantitative in vivo ¹⁹ F MRI of mouse neuroinflammation with a cryogenicallyâ€cooled transceive surface radiofrequency probe. Magnetic Resonance in Medicine, 2022, 87, 1952-1970.	1.9	5
192	Evaluating metallic artefact of biodegradable magnesium-based implants in magnetic resonance imaging. Bioactive Materials, 2022, 15, 382-391.	8.6	5
193	Diffusion-weighted Renal MRI at 9.4 Tesla Using RARE to Improve Anatomical Integrity. Scientific Reports, 2019, 9, 19723.	1.6	4
194	Imagine physiology without imaging. Acta Physiologica, 2020, 230, e13549.	1.8	4
195	Monitoring Renal Hemodynamics and Oxygenation by Invasive Probes: Experimental Protocol. Methods in Molecular Biology, 2021, 2216, 327-347.	0.4	4
196	Data Preparation Protocol for Low Signal-to-Noise Ratio Fluorine-19 MRI. Methods in Molecular Biology, 2021, 2216, 711-722.	0.4	4
197	Accelerated Fast Spin-Echo Magnetic Resonance Imaging of the Heart Using a Self-Calibrated Split-Echo Approach. PLoS ONE, 2014, 9, e94654.	1.1	3
198	Recommendations for Preclinical Renal MRI: A Comprehensive Open-Access Protocol Collection to Improve Training, Reproducibility, and Comparability of Studies. Methods in Molecular Biology, 2021, 2216, 3-23.	0.4	3

#	Article	IF	CITATIONS
199	Magnetic Resonance Imaging of Multiple Sclerosis at 7.0 Tesla. Journal of Visualized Experiments, 2021, , .	0.2	3
200	Cardiovascular magnetic resonance detects microvascular dysfunction in a mouse model of hypertrophic cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 63.	1.6	3
201	Cardiovascular Magnetic Resonance Imaging at 3.0 Tesla. Imaging Decisions (Berlin, Germany), 2004, 8, 23-30.	0.2	2
202	The MR-stethoscope: safe cardiac gating free of interference with electro-magnetic fields at 1.5 T, 3.0 T and 7.0 T. Journal of Cardiovascular Magnetic Resonance, 2009, 11, .	1.6	2
203	Multi-channel transmit/receive RF coil arrays for cardiac MRI at ultrahigh fields: Design, validation and clinical application. , 2013, , .		2
204	Near-infrared spectroscopy of renal tissue in vivo. , 2013, , .		2
205	Interpretation of functional renal MRI findings: Where physiology and imaging sciences need to talk across domains. Journal of Magnetic Resonance Imaging, 2018, 47, 1140-1141.	1.9	2
206	Cardiorenal sodium MRI in small rodents using a quadrature birdcage volume resonator at 9.4ÂT. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2020, 33, 121-130.	1.1	2
207	Physiological system analysis of the kidney by highâ€ŧemporalâ€෦esolution monitoring of an oxygenation step response. Magnetic Resonance in Medicine, 2021, 85, 334-345.	1.9	2
208	Simultaneous T 2 and mapping of multiple sclerosis lesions with radial RAREâ€EPI. Magnetic Resonance in Medicine, 2021, 86, 1383-1402.	1.9	2
209	Ultrahigh field MRI determination of water diffusion rates in ex vivo human lenses of different age. Quantitative Imaging in Medicine and Surgery, 2021, 11, 3029-3041.	1.1	2
210	Tissue optical properties from spatially resolved reflectance: calibration and in vivo application on rat kidney. Proceedings of SPIE, 2017, , .	0.8	2
211	Synthesis, Physicochemical Characterization and MR Relaxometry of Aqueous Ferrofluids. Journal of Nanoscience and Nanotechnology, 2008, 8, 2399-2409.	0.9	2
212	Chapter 11 Fluorinated Natural Compounds and Synthetic Drugs. , 2016, , 311-344.		2
213	Highly accelerated cardiovascular magnetic resonance imaging: concepts and clinical applications. , 2006, 2006, 373-6.		1
214	Cardiac imaging at 7.0 T: comparison of pulse oximetry, electrocardiogram and phonocardiogram triggered 2D-CINE for LV-function assessment. Journal of Cardiovascular Magnetic Resonance, 2010, 12, .	1.6	1
215	Development and evaluation of a small and mobile Magneto Alert Sensor (MALSE) to support safety requirements for magnetic resonance imaging. European Radiology, 2011, 21, 2187-2192.	2.3	1
216	On the RF heating of coronary stents at 7.0 Tesla MRI. Magnetic Resonance in Medicine, 2015, 74, spcone-spcone.	1.9	1

#	Article	IF	CITATIONS
217	On the subjective acceptance during cardiovascular magnetic resonance imaging at 7.0 Tesla. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P13.	1.6	1
218	Cardiovascular magnetic resonance at 7.0 Tesla in patients with hypertrophic cardiomyopathy - a pilot study. Journal of Cardiovascular Magnetic Resonance, 2015, 17, Q108.	1.6	1
219	Hardware Considerations for Preclinical Magnetic Resonance of the Kidney. Methods in Molecular Biology, 2021, 2216, 131-155.	0.4	1
220	Fluorine (19F) MRI for Assessing Inflammatory Cells in the Kidney: Experimental Protocol. Methods in Molecular Biology, 2021, 2216, 495-507.	0.4	1
221	Subsegmentation of the Kidney in Experimental MR Images Using Morphology-Based Regions-of-Interest or Multiple-Layer Concentric Objects. Methods in Molecular Biology, 2021, 2216, 549-564.	0.4	1
222	Analysis Protocols for MRI Mapping of the Blood Oxygenation–Sensitive Parameters T2* and T2 in the Kidney. Methods in Molecular Biology, 2021, 2216, 591-610.	0.4	1
223	Diffusionâ€weighted magnetic resonance imaging in rat kidney using twoâ€dimensional navigated, interleaved echoâ€planar imaging at 7.0ÂT. NMR in Biomedicine, 2022, 35, e4652.	1.6	1
224	Radiofrequency Antenna Helmet Array for Thermal Magnetic Resonance of Brain Tumours at 297 MHz. , 2022, , .		1
225	Myocardial T2* mapping free of distortion using susceptibility weighted spin-echo based imaging: a feasibility study. Journal of Cardiovascular Magnetic Resonance, 2009, 11, .	1.6	Ο
226	Advanced Cardiovascular Magnetic Resonance Imaging Techniques. , 2010, , 37-56.		0
227	Combining Photonic Crystal and Optical Monte Carlo Simulations: Implementation, Validation and Application in a Positron Emission Tomography Detector. IEEE Transactions on Nuclear Science, 2014, 61, 3618-3626.	1.2	0
228	Characterization of hemodynamics and oxygenation in the renal cortex of rats. Proceedings of SPIE, 2015, , .	0.8	0
229	Monitoring hemodynamics and oxygenation of the kidney in rats by a combined near-infrared spectroscopy and invasive probe approach. Proceedings of SPIE, 2015, , .	0.8	Ο
230	Reliable determination of tissue optical properties from spatially resolved reflectance. Proceedings of SPIE, 2017, , .	0.8	0
231	Myocardial T2* mapping at ultrahigh magnetic fields: in vivo myocardial tissue characteri-zation and assessment of cardiac physiology with magnetic resonance imaging. Current Directions in Biomedical Engineering, 2017, 3, 433-436.	0.2	Ο
232	Quantification of Myocardial Effective Transverse Relaxation Time with Magnetic Resonance at 7.0 Tesla for a Better Understanding of Myocardial (Patho)physiology. , 2018, , 343-372.		0
233	Cover Image, Volume 31, Issue 3. NMR in Biomedicine, 2018, 31, e3811.	1.6	0
234	Porous medium 3D flow simulation of contrast media washout in cardiac MRI reflects myocardial injury. Magnetic Resonance in Medicine, 2019, 82, 775-785.	1.9	0

#	Article	IF	CITATIONS
235	Human Cardiac Magnetic Resonance at Ultrahigh Fields. , 2019, , 142-160.e4.		0
236	Renal MRI Diffusion: Experimental Protocol. Methods in Molecular Biology, 2021, 2216, 419-428.	0.4	0
237	Monitoring hemodynamics and oxygenation of the kidney in rats by a combined near-infrared spectroscopy and invasive probe approach. , 2015, , .		Ο
238	Chapter 9 Tracking of Dendritic Cells. , 2016, , 243-282.		0
239	Near infrared spectroscopy system for quantitative monitoring of renal hemodynamics and oxygenation in rats. , 2019, , .		0
240	Highly Accelerated Cardiovascular Magnetic Resonance Imaging: Concepts and Clinical Applications. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0