Masami Kamigaito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1237348/publications.pdf Version: 2024-02-01

	11608	11581
20,844	70	135
citations	h-index	g-index
222	222	7604
322	322	7624
docs citations	times ranked	citing authors
	citations 322	20,844 70 citations h-index 322 322

#	Article	IF	CITATIONS
1	Metal-Catalyzed Living Radical Polymerization. Chemical Reviews, 2001, 101, 3689-3746.	23.0	3,247
2	Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris- (triphenylphosphine)ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization. Macromolecules, 1995, 28, 1721-1723.	2.2	2,942
3	Iron(II) Chloride Complex for Living Radical Polymerization of Methyl Methacrylate1. Macromolecules, 1997, 30, 4507-4510.	2.2	452
4	Nickel-Mediated Living Radical Polymerization of Methyl Methacrylate1. Macromolecules, 1997, 30, 2249-2253.	2.2	293
5	Stereospecific Living Radical Polymerization: Dual Control of Chain Length and Tacticity for Precision Polymer Synthesis. Chemical Reviews, 2009, 109, 5120-5156.	23.0	274
6	Living Radical Polymerization of Methyl Methacrylate with Ruthenium Complex:Â Formation of Polymers with Controlled Molecular Weights and Very Narrow Distributions1. Macromolecules, 1996, 29, 1070-1072.	2.2	254
7	Beyond Traditional RAFT: Alternative Activation of Thiocarbonylthio Compounds for Controlled Polymerization. Advanced Science, 2016, 3, 1500394.	5.6	249
8	AAB-Sequence Living Radical Chain Copolymerization of Naturally Occurring Limonene with Maleimide: An End-to-End Sequence-Regulated Copolymer. Journal of the American Chemical Society, 2010, 132, 10003-10005.	6.6	248
9	Sequence-regulated vinyl copolymers by metal-catalysed step-growth radical polymerization. Nature Communications, 2010, 1, 6.	5.8	226
10	RAFT Polymerization of N-Isopropylacrylamide in the Absence and Presence of Y(OTf)3: Simultaneous Control of Molecular Weight and Tacticity. Macromolecules, 2004, 37, 1702-1710.	2.2	220
11	Xanthate-Mediated Radical Polymerization of N-Vinylpyrrolidone in Fluoroalcohols for Simultaneous Control of Molecular Weight and Tacticity. Macromolecules, 2005, 38, 10397-10405.	2.2	210
12	Star-Shaped Polymers by Metal-Catalyzed Living Radical Polymerization. 1. Design of Ru(II)-Based Systems and Divinyl Linking Agents. Macromolecules, 2001, 34, 215-221.	2.2	201
13	Possibility of Living Radical Polymerization of Vinyl Acetate Catalyzed by Iron(I) Complex1. Macromolecules, 2002, 35, 330-333.	2.2	201
14	Synthesis of Isotactic Poly(N-isopropylacrylamide) by RAFT Polymerization in the Presence of Lewis Acid. Macromolecules, 2003, 36, 543-545.	2.2	189
15	Calixarene-Core Multifunctional Initiators for the Ruthenium-Mediated Living Radical Polymerization of Methacrylates1. Macromolecules, 1998, 31, 6762-6768.	2.2	183
16	Effect of Tacticity of Poly(N-isopropylacrylamide) on the Phase Separation Temperature of Its Aqueous Solutions. Polymer Journal, 2005, 37, 234-237.	1.3	180
17	NiBr2(Pn-Bu3)2-Mediated Living Radical Polymerization of Methacrylates and Acrylates and Their Block or Random Copolymerizations1. Macromolecules, 1998, 31, 6756-6761.	2.2	179
18	Cationic RAFT Polymerization Using ppm Concentrations of Organic Acid. Angewandte Chemie - International Edition, 2015, 54, 1924-1928.	7.2	165

#	Article	IF	CITATIONS
19	Living Radical Polymerization of Alkyl Methacrylates with Ruthenium Complex and Synthesis of Their Block Copolymers. Macromolecules, 1996, 29, 6979-6982.	2.2	158
20	Design of initiators for living radical polymerization of methyl methacrylate mediated by ruthenium(II) complex. Tetrahedron, 1997, 53, 15445-15457.	1.0	157
21	Multifunctional Initiators for the Ruthenium-Mediated Living Radical Polymerization of Methyl Methacrylate:Â Di- and Trifunctional Dichloroacetates for Synthesis of Multiarmed Polymers1. Macromolecules, 1998, 31, 557-562.	2.2	150
22	Polymer Catalysts from Polymerization Catalysts:Â Direct Encapsulation of Metal Catalyst into Star Polymer Core during Metal-Catalyzed Living Radical Polymerization. Journal of the American Chemical Society, 2003, 125, 5288-5289.	6.6	148
23	Evidence for Living Radical Polymerization of Methyl Methacrylate with Ruthenium Complex:Â Effects of Protic and Radical Compounds and Reinitiation from the Recovered Polymers1. Macromolecules, 1997, 30, 2244-2248.	2.2	143
24	Re(V)-Mediated Living Radical Polymerization of Styrene:1ReO2I(PPh3)2/Râ^'l Initiating Systems. Macromolecules, 1999, 32, 2420-2424.	2.2	140
25	Progress and Perspectives Beyond Traditional RAFT Polymerization. Advanced Science, 2020, 7, 2001656.	5.6	139
26	Living cationic polymerization of isobutyl vinyl ether by hydrogen chloride/Lewis acid initiating systems in the presence of salts: in-situ direct NMR analysis of the growing species. Macromolecules, 1993, 26, 1643-1649.	2.2	135
27	Ru(Cp*)Cl(PPh3)2:Â A Versatile Catalyst for Living Radical Polymerization of Methacrylates, Acrylates, and Styrene1. Macromolecules, 2001, 34, 4370-4374.	2.2	131
28	FeCp(CO)2I:Â A Phosphine-Free Half-Metallocene-Type Iron(II) Catalyst for Living Radical Polymerization of Styrene1. Macromolecules, 1999, 32, 6877-6880.	2.2	129
29	Half-Metallocene-Type Ruthenium Complexes as Active Catalysts for Living Radical Polymerization of Methyl Methacrylate and Styrene1. Macromolecules, 1999, 32, 3820-3823.	2.2	123
30	Metal-catalyzed living radical polymerization: discovery and developments. Chemical Record, 2004, 4, 159-175.	2.9	123
31	Silyl Enol Ethers:Â End-Capping Agents for Living Radical Polymerization of Methyl Methacrylate with Ruthenium Complex1. Macromolecules, 1998, 31, 6708-6711.	2.2	117
32	Manganese-Based Controlled/Living Radical Polymerization of Vinyl Acetate, Methyl Acrylate, and Styrene: Highly Active, Versatile, and Photoresponsive Systems. Macromolecules, 2008, 41, 7359-7367.	2.2	117
33	Amphiphilic, Thermosensitive Ruthenium(II)-Bearing Star Polymer Catalysts:Â One-Pot Synthesis of PEG Armed Star Polymers with Ruthenium(II)-Enclosed Microgel Cores via Metal-Catalyzed Living Radical Polymerization. Macromolecules, 2007, 40, 3581-3588.	2.2	114
34	Living cationic polymerization of .alphamethylstyrene initiated with a vinyl ether-hydrogen chloride adduct in conjunction with tin tetrabromide. Macromolecules, 1993, 26, 2670-2673.	2.2	113
35	Catalytic Activities of Ruthenium(II) Complexes in Transition-Metal-Mediated Living Radical Polymerization:Â Polymerization, Model Reaction, and Cyclic Voltammetry1. Macromolecules, 2000, 33, 5825-5829.	2.2	112
36	Discrete and Stereospecific Oligomers Prepared by Sequential and Alternating Single Unit Monomer Insertion. Journal of the American Chemical Society, 2018, 140, 13392-13406.	6.6	110

Masami Kamigaito

#	Article	IF	CITATIONS
37	lodine Transfer Radical Polymerization of Vinyl Acetate in Fluoroalcohols for Simultaneous Control of Molecular Weight, Stereospecificity, and Regiospecificity. Macromolecules, 2006, 39, 4054-4061.	2.2	104
38	Stereoregulation in Living Radical Polymerization. Macromolecules, 2008, 41, 269-276.	2.2	103
39	Core-Functionalized Star Polymers by Transition Metal-Catalyzed Living Radical Polymerization. 1. Synthesis and Characterization of Star Polymers with PMMA Arms and Amide Cores1. Macromolecules, 2001, 34, 7629-7635.	2.2	102
40	Biomass-derived heat-resistant alicyclic hydrocarbon polymers: poly(terpenes) and their hydrogenated derivatives. Green Chemistry, 2006, 8, 878.	4.6	99
41	Design and Synthesis of Self-Degradable Antibacterial Polymers by Simultaneous Chain- and Step-Growth Radical Copolymerization. Biomacromolecules, 2012, 13, 1554-1563.	2.6	99
42	A New Ruthenium Complex with an Electron-Donating Aminoindenyl Ligand for Fast Metal-Mediated Living Radical Polymerizations. Journal of the American Chemical Society, 2002, 124, 9994-9995.	6.6	97
43	Main-Chain and Side-Chain Sequence-Regulated Vinyl Copolymers by Iterative Atom Transfer Radical Additions and 1:1 or 2:1 Alternating Radical Copolymerization. Journal of the American Chemical Society, 2016, 138, 944-954.	6.6	94
44	Controlled Cationic Polymerization of p-Methoxystyrene in Aqueous Media with Yb(OTf)3. Macromolecules, 1999, 32, 3827-3832.	2.2	92
45	Living Radical Polymerization in Water and Alcohols:Â Suspension Polymerization of Methyl Methacrylate with RuCl2(PPh3)3Complex1. Macromolecules, 1999, 32, 2204-2209.	2.2	91
46	Immobilization of Amphiphilic Polycations by Catechol Functionality for Antimicrobial Coatings. Langmuir, 2011, 27, 4010-4019.	1.6	89
47	Interconvertible Living Radical and Cationic Polymerization through Reversible Activation of Dormant Species with Dual Activity. Angewandte Chemie - International Edition, 2014, 53, 10932-10936.	7.2	88
48	Precision Synthesis of Bioâ€Based Acrylic Thermoplastic Elastomer by RAFT Polymerization of Itaconic Acid Derivatives. Macromolecular Rapid Communications, 2014, 35, 161-167.	2.0	88
49	Living Cationic Isomerization Polymerization of β-Pinene. 1. Initiation with HClâ^'2-Chloroethyl Vinyl Ether Adduct/TiCl3(OiPr) in Conjunction withnBu4NCl1. Macromolecules, 1997, 30, 22-26.	2.2	86
50	Periodically Functionalized and Grafted Copolymers via 1:2-Sequence-Regulated Radical Copolymerization of Naturally Occurring Functional Limonene and Maleimide Derivatives. Macromolecules, 2013, 46, 5473-5482.	2.2	86
51	Living cationic polymerization of isobutyl vinyl ether by RCOOH/Lewis acid initiating systems: effects of carboxylate ions and Lewis acid activators. Macromolecules, 1991, 24, 3988-3992.	2.2	85
52	Living Random Copolymerization of Styrene and Methyl Methacrylate with a Ru(II) Complex and Synthesis of ABC-Type "Block-Random―Copolymers. Macromolecules, 1998, 31, 5582-5587.	2.2	84
53	Core-Functionalized Star Polymers by Transition Metal-Catalyzed Living Radical Polymerization. 2. Selective Interaction with Protic Guests via Core Functionalities1. Macromolecules, 2002, 35, 1493-1498.	2.2	84
54	Immobilized Polysaccharide-Based Chiral Stationary Phases for HPLC. Polymer Journal, 2006, 38, 91-108.	1.3	84

#	Article	IF	CITATIONS
55	Immobilization of polysaccharide derivatives onto silica gel. Journal of Chromatography A, 2007, 1157, 151-158.	1.8	83
56	Mn ₂ (CO) ₁₀ -Induced Controlled/Living Radical Copolymerization of Methyl Acrylate and 1-Hexene in Fluoroalcohol: High α-Olefin Content Copolymers with Controlled Molecular Weights. Macromolecules, 2009, 42, 2497-2504.	2.2	83
57	Bio-Based Functional Styrene Monomers Derived from Naturally Occurring Ferulic Acid for Poly(vinylcatechol) and Poly(vinylguaiacol) via Controlled Radical Polymerization. Macromolecules, 2017, 50, 4206-4216.	2.2	83
58	In-Situ Direct Mechanistic Transformation from RAFT to Living Cationic Polymerization for (Meth)acrylateâ 'Vinyl Ether Block Copolymers. Macromolecules, 2010, 43, 7523-7531.	2.2	81
59	Living cationic polymerization of isobutyl vinyl ether by protonic acid/zinc halide initiating systems: evidence for the halogen exchange with zinc halide in the growing species. Macromolecules, 1992, 25, 2587-2591.	2.2	80
60	MALDIâ^'TOFâ^'MS Analysis of Ruthenium(II)-Mediated Living Radical Polymerizations of Methyl Methacrylate, Methyl Acrylate, and Styrene1. Macromolecules, 2001, 34, 2083-2088.	2.2	80
61	Sustainable cycloolefin polymer from pine tree oil for optoelectronics material: living cationic polymerization of β-pinene and catalytic hydrogenation of high-molecular-weight hydrogenated poly(β-pinene). Polymer Chemistry, 2014, 5, 3222-3230.	1.9	79
62	Stereoregulation in Cationic Polymerization by Designed Lewis Acids. 1. Highly Isotactic Poly(isobutyl) Tj ETQqO	0 0 rgBT /0 2.2	Dverlock 107
63	Living Radical Polymerization of Styrene by Half-Metallocene Iron Carbonyl Complexes1. Macromolecules, 2000, 33, 3543-3549.	2.2	78
64	1:2â€sequenceâ€regulated radical copolymerization of naturally occurring terpenes with maleimide derivatives in fluorinated alcohol. Journal of Polymer Science Part A, 2013, 51, 1774-1785.	2.5	78
65	Living radical polymerization of methyl methacrylate with a zerovalent nickel complex, Ni(PPh3)41. Journal of Polymer Science Part A, 1999, 37, 3003-3009.	2.5	76
66	Living Radical Polymerization of N,N-Dimethylacrylamide with RuCl2(PPh3)3-Based Initiating Systems. Macromolecules, 1999, 32, 8005-8009.	2.2	75
67	High-performance liquid chromatographic enantioseparations on capillary columns containing monolithic silica modified with amylose tris(3,5-dimethylphenylcarbamate). Journal of Chromatography A, 2006, 1110, 46-52.	1.8	73
68	Stereogradient Polymers Formed by Controlled/Living Radical Polymerization of Bulky Methacrylate Monomers. Angewandte Chemie - International Edition, 2009, 48, 1991-1994.	7.2	73
69	High-performance liquid chromatographic enantioseparations on capillary columns containing crosslinked polysaccharide phenylcarbamate derivatives attached to monolithic silica. Journal of Separation Science, 2006, 29, 1988-1995.	1.3	72
70	Immobilized-type chiral packing materials for HPLC based on polysaccharide derivatives. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 875, 2-11.	1.2	70
71	Mn ₂ (CO) ₁₀ â€induced controlled/living radical copolymerization of vinyl acetate and methyl acrylate: Spontaneous formation of block copolymers consisting of gradient and homopolymer segments. Journal of Polymer Science Part A, 2009, 47, 1343-1353.	2.5	70

72Thioether-Mediated Degenerative Chain-Transfer Cationic Polymerization: A Simple Metal-Free System
for Living Cationic Polymerization. Macromolecules, 2015, 48, 5533-5542.2.270

#	Article	IF	CITATIONS
73	Living cationic polymerization of isobutyl vinyl ether by benzoic acid derivatives/zinc chloride initiating systems: slow interconversion between dormant and activated growing species. Macromolecules, 1992, 25, 6400-6406.	2.2	69
74	Novel BF3OEt2/Râ^'OH Initiating System for Controlled Cationic Polymerization of Styrene in the Presence of Water. Macromolecules, 2001, 34, 396-401.	2.2	69
75	Amine Additives for Fast Living Radical Polymerization of Methyl Methacrylate with RuCl2(PPh3)31. Macromolecules, 2002, 35, 2934-2940.	2.2	69
76	Metal-Catalyzed Simultaneous Chain- and Step-Growth Radical Polymerization: Marriage of Vinyl Polymers and Polyesters. Journal of the American Chemical Society, 2010, 132, 7498-7507.	6.6	69
77	Bioâ€Based Polyketones by Selective Ringâ€Opening Radical Polymerization of αâ€Pineneâ€Derived Pinocarvone. Angewandte Chemie - International Edition, 2016, 55, 1372-1376.	7.2	67
78	Combination of Cationic and Radical RAFT Polymerizations: A Versatile Route to Well-Defined Poly(ethyl vinyl ether)- <i>block</i> -poly(vinylidene fluoride) Block Copolymers. ACS Macro Letters, 2017, 6, 393-398.	2.3	67
79	A Linear Lignin Analogue: Phenolic Alternating Copolymers from Naturally Occurring β-Methylstyrene via Aqueous-Controlled Cationic Copolymerization. Journal of the American Chemical Society, 2007, 129, 9586-9587.	6.6	66
80	Evolution of Iron Catalysts for Effective Living Radical Polymerization:Â Design of Phosphine/Halogen Ligands in FeX2(PR3)21. Macromolecules, 2007, 40, 8658-8662.	2.2	65
81	Lanthanide Triflates-Mediated Emulsion Cationic Polymerization ofp-Alkoxystyrenes in Aqueous Media1. Macromolecules, 2000, 33, 4660-4666.	2.2	63
82	Reversible Activation of Carbonâ^'Halogen Bonds by RuCl2(PPh3)3:Â Halogen Exchange Reactions in Living Radical Polymerization1. Macromolecules, 2000, 33, 2819-2824.	2.2	60
83	Iron-Catalyzed Suspension Living Radical Polymerizations of Acrylates and Styrene in Water1. Macromolecules, 2002, 35, 2949-2954.	2.2	59
84	Recent developments in metal-catalyzed living radical polymerization. Polymer Journal, 2011, 43, 105-120.	1.3	59
85	Living Radical Polymerization of Para-Substituted Styrenes and Synthesis of Styrene-Based Copolymers with Rhenium and Iron Complex Catalysts. Macromolecules, 2000, 33, 6746-6751.	2.2	58
86	Iron-catalyzed radical polymerization of acrylamides in the presence of Lewis acid for simultaneous control of molecular weight and tacticity. Journal of Polymer Science Part A, 2006, 44, 2086-2098.	2.5	58
87	One-shot controlled/living copolymerization for various comonomer sequence distributions via dual radical and cationic active species from RAFT terminals. Polymer Chemistry, 2017, 8, 5002-5011.	1.9	57
88	Metal-complex-bearing star polymers by metal-catalyzed living radical polymerization: Synthesis and characterization of poly(methyl methacrylate) star polymers with Ru(II)-embedded microgel cores. Journal of Polymer Science Part A, 2006, 44, 4966-4980.	2.5	55
89	Metal-catalyzed radical polyaddition as a novel polymer synthetic route. Chemical Communications, 2007, , 1260.	2.2	55
90	Effects of Tacticity and Molecular Weight of Poly(<i>N</i> -isopropylacrylamide) on Its Glass Transition Temperature. Macromolecules, 2011, 44, 5822-5824.	2.2	55

#	Article	IF	CITATIONS
91	Stereospecific Cyclic Poly(methyl methacrylate) and Its Topologyâ€Guided Hierarchically Controlled Supramolecular Assemblies. Angewandte Chemie - International Edition, 2014, 53, 459-464.	7.2	55
92	Cationic RAFT and DT polymerization. Progress in Polymer Science, 2022, 124, 101485.	11.8	53
93	End-Functionalized Polymers of Styrene and p-Methylstyrene by Living Cationic Polymerization with Functionalized Initiators. Macromolecules, 1994, 27, 1093-1098.	2.2	52
94	Synthesis of star-shaped copolymers with methyl methacrylate andn-butyl methacrylate by metal-catalyzed living radical polymerization: Block and random copolymer arms and microgel cores. Journal of Polymer Science Part A, 2002, 40, 633-641.	2.5	52
95	Stereogradient Polymers by Ruthenium-Catalyzed Stereospecific Living Radical Copolymerization of Two Monomers with Different Stereospecificities and Reactivities. Journal of the American Chemical Society, 2006, 128, 16026-16027.	6.6	52
96	A phosphonium intermediate for cationic RAFT polymerization. Polymer Chemistry, 2016, 7, 1387-1396.	1.9	52
97	RuH2(PPh3)4:Â An Active Catalyst for Living Radical Polymerization of Methyl Methacrylate at or above Room Temperature1. Macromolecules, 1999, 32, 6461-6465.	2.2	51
98	Metal Alkoxides as Additives for Ruthenium(II)-Catalyzed Living Radical Polymerization. Macromolecules, 2000, 33, 6732-6737.	2.2	50
99	Direct Synthesis of Amphiphilic Random and Block Copolymers ofp-Hydroxystyrene andp-Methoxystyrene via Living Cationic Polymerization with BF3OEt2/ROH Systems1. Macromolecules, 2000, 33, 5830-5835.	2.2	50
100	Molecular mapping of poly(methyl methacrylate) super-helix stereocomplexes. Chemical Science, 2015, 6, 1370-1378.	3.7	50
101	Direct Living Cationic Polymerization ofp-Hydroxystyrene with Boron Trifluoride Etherate in the Presence of Water1. Macromolecules, 2000, 33, 5405-5410.	2.2	49
102	Simultaneous control of the stereospecificity and molecular weight in the ruthenium-catalyzed living radical polymerization of methyl and 2-hydroxyethyl methacrylates and sequential synthesis of stereoblock polymers. Journal of Polymer Science Part A, 2006, 44, 3609-3615.	2.5	49
103	Living Cationic Isomerization Polymerization of \hat{l}^2 -Pinene. 2. Synthesis of Block and Random Copolymers with Styrene orp-Methylstyrene. Macromolecules, 1997, 30, 27-31.	2.2	48
104	Metal Triflates and Tetrafluoroborates as Water-Tolerant Lewis Acids for Cationic Polymerization in Aqueous Media1. Macromolecules, 2000, 33, 5836-5840.	2.2	48
105	Sulfonyl chlorides as initiators for the ruthenium-mediated living radical polymerization of methyl methacrylate. Journal of Polymer Science Part A, 1996, 34, 3585-3589.	2.5	47
106	Star poly(methyl methacrylate) with end-functionalized arm chains by ruthenium-catalyzed living radical polymerization. Journal of Polymer Science Part A, 2002, 40, 1972-1982.	2.5	47
107	Stereospecific living radical polymerization for simultaneous control of molecular weight and tacticity. Journal of Polymer Science Part A, 2006, 44, 6147-6158.	2.5	47
108	In Situ and Time-Resolved Small-Angle Neutron Scattering Observation of Star Polymer Formation via Arm-Linking Reaction in Ruthenium-Catalyzed Living Radical Polymerization. Macromolecules, 2010, 43, 8218-8232.	2.2	47

#	Article	IF	CITATIONS
109	Sulfonic acids as water-soluble initiators for cationic polymerization in aqueous media with Yb(OTf)3. Journal of Polymer Science Part A, 2000, 38, 2728-2733.	2.5	46
110	Mn2(CO)10-Induced RAFT Polymerization of Vinyl Acetate, Methyl Acrylate, and Styrene. Polymer Journal, 2009, 41, 595-603.	1.3	46
111	Degradable Poly(<i>N</i> -isopropylacrylamide) with Tunable Thermosensitivity by Simultaneous Chain- and Step-Growth Radical Polymerization. Macromolecules, 2011, 44, 2382-2386.	2.2	46
112	Synergistic Advances in Living Cationic and Radical Polymerizations. Macromolecules, 2020, 53, 6749-6753.	2.2	46
113	Cationic polymerization of ?-pinene with the AlCl3/SbCl3 binary catalyst: Comparison with ?-pinene polymerization. Journal of Applied Polymer Science, 1996, 61, 1011-1016.	1.3	45
114	Stereoregulation in cationic polymerization by designed Lewis acids. II. Effects of alkyl vinyl ether structure. Journal of Polymer Science Part A, 2001, 39, 1060-1066.	2.5	45
115	Synthesis of end-functionalized poly(methyl methacrylate) by ruthenium-catalyzed living radical polymerization with functionalized initiators. Journal of Polymer Science Part A, 2002, 40, 1937-1944.	2.5	45
116	Living Cationic Polymerization of Styrene with TiCl3(OiPr) as a Lewis Acid Activator. Macromolecules, 1996, 29, 6100-6103.	2.2	44
117	Enantioseparation using urea- and imide-bearing chitosan phenylcarbamate derivatives as chiral stationary phases for high-performance liquid chromatography. Chirality, 2008, 20, 288-294.	1.3	44
118	Synthesis and SANS Characterization of Poly(vinyl methyl ether)-block-polystyrene. Macromolecules, 1997, 30, 6819-6825.	2.2	43
119	Star-shaped polymers by Ru(II)-catalyzed living radical polymerization. II. Effective reaction conditions and characterization by multi-angle laser light scattering/size exclusion chromatography and small-angle X-ray scattering. Journal of Polymer Science Part A, 2002, 40, 2245-2255.	2.5	43
120	Iron-catalyzed living radical polymerization of acrylates: Iodide-based initiating systems and block and random copolymerizations. Journal of Polymer Science Part A, 2002, 40, 2033-2043.	2.5	41
121	Chiral (–)-DIOP Ruthenium Complexes for Asymmetric Radical Addition and Living Radical Polymerization Reactions. European Journal of Organic Chemistry, 2007, 2007, 782-791.	1.2	41
122	Metal-Catalyzed Radical Polyaddition for Aliphatic Polyesters via Evolution of Atom Transfer Radical Addition into Step-Growth Polymerization. Macromolecules, 2009, 42, 472-480.	2.2	41
123	Cationic polymerization of α-pinene with the binary catalyst AlCl3/SbCl3. Die Makromolekulare Chemie, 1992, 193, 2311-2321.	1.1	40
124	Nanoâ€ŧoâ€Macroscale Poly(methyl methacrylate) Stereocomplex Assemblies. Angewandte Chemie - International Edition, 2009, 48, 8707-8711.	7.2	40
125	Renewable Î ² -methylstyrenes for bio-based heat-resistant styrenic copolymers: radical copolymerization enhanced by fluoroalcohol and controlled/living copolymerization by RAFT. Polymer Chemistry, 2014, 5, 3182-3189.	1.9	40
126	Monomer Sequence Regulation in Main and Side Chains of Vinyl Copolymers: Synthesis of Vinyl Oligomonomers via Sequential Atom Transfer Radical Addition and Their Alternating Radical Copolymerization. ACS Macro Letters, 2015, 4, 745-749.	2.3	40

#	Article	IF	CITATIONS
127	In-Situ 13C and 1H NMR Analysis of the Growing Species in Living Cationic Polymerization of Isobutyl Vinyl Ether by the HCl/SnCl4 Initiating System in the Presence of a nBu4NCl Salt. Macromolecules, 1995, 28, 3747-3755.	2.2	39
128	Evolution of iron catalysts for effective living radical polymerization: P–N chelate ligand for enhancement of catalytic performances. Journal of Polymer Science Part A, 2008, 46, 6819-6827.	2.5	39
129	Scalable Synthesis of Bio-Based Functional Styrene: Protected Vinyl Catechol from Caffeic Acid and Controlled Radical and Anionic Polymerizations Thereof. ACS Sustainable Chemistry and Engineering, 2018, 6, 13681-13686.	3.2	39
130	Organicâ€inorganic Hybrid Materials for Efficient Enantioseparation Using Cellulose 3,5â€Dimethylphenylcarbamate and Tetraethyl Orthosilicate. Chemistry - an Asian Journal, 2008, 3, 1494-1499.	1.7	38
131	Stereospecific Free Radical and RAFT Polymerization of Bulky Silyl Methacrylates for Tacticity and Molecular Weight Controlled Poly(methacrylic acid). Macromolecules, 2011, 44, 9108-9117.	2.2	38
132	Metal Complex-Mediated Living Radical Polymerization: Features, Scope, and Precision Polymer Synthesis. Journal of Macromolecular Science - Pure and Applied Chemistry, 1997, 34, 1803-1814.	1.2	37
133	BABâ€ <i>random</i> Monomer Sequence via Radical Terpolymerization of Limoneneâ€(A), Maleimideâ€ and Methacrylateâ€(C): Terpene Polymers with Randomly Distributed Periodic Sequences. Angewandte Chemie - International Edition, 2017, 56, 1789-1793.	(B), 7.2	37
134	Synthesis of PEVE-b-P(CTFE-alt-EVE) block copolymers by sequential cationic and radical RAFT polymerization. Polymer Chemistry, 2018, 9, 352-361.	1.9	37
135	A highly active Fe(i) catalyst for radical polymerisation and taming the polymerisation with iodine. Chemical Communications, 2002, , 2694-2695.	2.2	35
136	Efficient Immobilization of Cellulose Phenylcarbamate Bearing Alkoxysilyl Group onto Silica Gel by Intermolecular Polycondensation and Its Chiral Recognition. Chemistry Letters, 2006, 35, 1250-1251.	0.7	35
137	Iron(III) chloride/Râ€Cl/tributylphosphine for metalâ€catalyzed living radical polymerization: A unique system with a higher oxidation state iron complex. Journal of Polymer Science Part A, 2008, 46, 6358-6363.	2.5	35
138	Triple Hydrogen Bonding for Stereospecific Radical Polymerization of a DAD Monomer and Simultaneous Control of Tacticity and Molecular Weight. Macromolecules, 2006, 39, 6882-6886.	2.2	34
139	Immobilized polysaccharide derivatives: chiral packing materials for efficient HPLC resolution. Chemical Record, 2007, 7, 91-103.	2.9	34
140	A simple combination of higher-oxidation-state FeX3 and phosphine or amine ligand for living radical polymerization of styrene, methacrylate, and acrylate. Polymer Chemistry, 2013, 4, 3554.	1.9	33
141	Stereoregulation in cationic polymerization. III. High isospecificity with the bulky phosphoric acid [(RO)2PO2H]/SnCl4 initiating systems: Design of counteranions via initiators. Journal of Polymer Science Part A, 2001, 39, 1067-1074.	2.5	32
142	Kinetic Hydrate Inhibition of Poly(<i>N</i> -isopropylmethacrylamide)s with Different Tacticities. Energy & Fuels, 2012, 26, 3577-3585.	2.5	32
143	Sequence-regulated vinyl copolymers with acid and base monomer units <i>via</i> atom transfer radical addition and alternating radical copolymerization. Polymer Chemistry, 2016, 7, 4833-4841.	1.9	32
144	Degenerative chainâ€ŧransfer process: Controlling all chainâ€growth polymerizations and enabling novel monomer sequences. Journal of Polymer Science Part A, 2019, 57, 243-254.	2.5	31

#	Article	IF	CITATIONS
145	Alkoxy-Substituted Titanium(IV) Chlorides as Lewis Acid Activators for Living Cationic Polymerization of Isobutyl Vinyl Ether: Control of Lewis Acidity in the Design of Initiating Systems. Macromolecules, 1995, 28, 5671-5675.	2.2	30
146	Ruthenium-catalyzed fast living radical polymerization of methyl methacrylate: The R?Cl/Ru(Ind)Cl(PPh3)2/n-Bu2NH initiating system. Journal of Polymer Science Part A, 2002, 40, 617-623.	2.5	30
147	Controlled Cationic Polymerization of p-(Chloromethyl)styrene:  BF3-Catalyzed Selective Activation of a Câ^'O Terminal from Alcohol. Macromolecules, 2003, 36, 3540-3544.	2.2	30
148	Diversifying Cationic RAFT Polymerization with Various Counteranions: Generation of Cationic Species from Organic Halides and Various Metal Salts. ACS Macro Letters, 2016, 5, 1157-1161.	2.3	30
149	Cellulose Derivative-based Beads as Chiral Stationary Phase for HPLC. Chemistry Letters, 2004, 33, 1188-1189.	0.7	29
150	Synthesis and Chiral Recognition of Novel Regioselectively Substituted Amylose Derivatives. Chemistry Letters, 2008, 37, 558-559.	0.7	29
151	Multifactor Control of Vinyl Monomer Sequence, Molecular Weight, and Tacticity via Iterative Radical Additions and Olefin Metathesis Reactions. Journal of the American Chemical Society, 2020, 142, 18955-18962.	6.6	29
152	Living cationic isomerization polymerization of ?-pinene. III. Synthesis of end-functionalized polymers and graft copolymers. Journal of Polymer Science Part A, 1997, 35, 1423-1430.	2.5	28
153	Cationic Polymerization of Cyclopentadiene with SnCl4:  Control of Molecular Weight and Narrow Molecular Weight Distribution. Macromolecules, 2001, 34, 3176-3181.	2.2	28
154	Regiospecific Radical Polymerization of Vinyl Methacrylate in the Presence of Lewis Acids into Soluble Polymers with Pendent Vinyl Ester Substituents. Macromolecules, 2008, 41, 3042-3048.	2.2	28
155	Nucleobaseâ€Mediated Stereospecific Radical Polymerization and Combination with RAFT Polymerization for Simultaneous Control of Molecular Weight and Tacticity. Macromolecular Rapid Communications, 2011, 32, 226-232.	2.0	28
156	From-syndiotactic-to-isotactic stereogradient methacrylic polymers by RAFT copolymerization of methacrylic acid and its bulky esters. Polymer Chemistry, 2012, 3, 1750-1757.	1.9	28
157	Living cationic polymerization of isobutyl vinyl ether by the diphenyl phosphate/zinc iodide initiating system. Polymer Bulletin, 1988, 20, 407-412.	1.7	27
158	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 3441-3453.	1.1	27
159	Matrix-assisted laser desorption ionization time of flight mass spectrometry analysis of living cationic polymerization of vinyl ethers. I. Optimization of measurement conditions for poly(isobutyl) Tj ETQq1	10.72854314	⊦rg₿ ₮ /Overio
160	Quenching of metal-catalyzed living radical polymerization with silyl enol ethers. Journal of Polymer Science Part A, 2000, 38, 4735-4748.	2.5	27
161	AxBAx-Type Blockâ^'Graft Polymers with Middle Soft Segments and Outer Hard Graft Chains by Ruthenium-Catalyzed Living Radical Polymerization:  Synthesis and Characterization. Macromolecules, 2007, 40, 465-473.	2.2	27
162	Asymmetric radical polymerization and copolymerization ofN-(1-phenyldibenzosuberyl)methacrylamide and its derivative leading to optically active helical polymers. Journal of Polymer Science Part A, 2007, 45, 1304-1315.	2.5	27

#	Article	IF	CITATIONS
163	Diverse approaches to star polymers via cationic and radical RAFT cross-linking reactions using mechanistic transformation. Polymer Chemistry, 2017, 8, 5972-5981.	1.9	27
164	Construction of Sequence-Regulated Vinyl Copolymers via Iterative Single Vinyl Monomer Additions and Subsequent Metal-Catalyzed Step-Growth Radical Polymerization. Macromolecules, 2019, 52, 3327-3341.	2.2	27
165	Amino alcohol additives for the fast living radical polymerization of methyl methacrylate with RuCl2(PPh3)3. Journal of Polymer Science Part A, 2003, 41, 3597-3605.	2.5	26
166	Enantioseparation by HPLC using phenylcarbonate, benzoylformate,p-toluenesulfonylcarbamate, and benzoylcarbamates of cellulose and amylose as chiral stationary phases. Chirality, 2005, 17, 299-304.	1.3	26
167	Controlled Radical Copolymerization of Cinnamic Derivatives as Renewable Vinyl Monomers with Both Acrylic and Styrenic Substituents: Reactivity, Regioselectivity, Properties, and Functions. Biomacromolecules, 2019, 20, 192-203.	2.6	26
168	Iron Oxides as Heterogeneous Catalysts for Controlled/Living Radical Polymerization of Styrene and Methyl Methacrylate. Macromolecules, 2011, 44, 1927-1933.	2.2	25
169	Nanocellular foaming of fluorine containing block copolymers in carbon dioxide: the role of glass transition in carbon dioxide. RSC Advances, 2012, 2, 2821.	1.7	25
170	Interconvertible and switchable cationic/PET-RAFT copolymerization triggered by visible light. Polymer Journal, 2020, 52, 65-73.	1.3	25
171	Living cationic polymerization of isobutyl vinyl ether initiated by the trimethylsilyl iodide/zinc iodide system. Polymer Bulletin, 1988, 19, 359.	1.7	24
172	Stereospecific cationic RAFT polymerization of bulky vinyl ethers and stereoblock poly(vinyl alcohol) via mechanistic transformation to radical RAFT polymerization of vinyl acetate. Giant, 2021, 5, 100047.	2.5	24
173	Living cationic polymerization of isobutyl vinyl ether by trimethylsilyl iodide: Lewis acid systems on the presence of acetone: initiation via a silyloxycarbocation. Macromolecules, 1990, 23, 4896-4901.	2.2	23
174	Synthesis of end-functionalized polystyrenes with organosilicon end-capping reagents via living cationic polymerization. Journal of Polymer Science Part A, 1994, 32, 2531-2542.	2.5	23
175	Preparation of HPLC chiral packing materials using cellulose tris(4-methylbenzoate) for the separation of chrysanthemate isomers. Journal of Polymer Science Part A, 2006, 44, 5087-5097.	2.5	23
176	Precise Synthesis of a Homogeneous Thermoresponsive Polymer Network Composed of Four-Branched Star Polymers with a Narrow Molecular Weight Distribution. Macromolecules, 2020, 53, 374-386.	2.2	23
177	Novel Initiating System for the Stereocontrolled Radical Polymerization of Acrylamides: Alkyl Bromide/Rare Earth Metal Triflate System. Polymer Journal, 2004, 36, 728-736.	1.3	22
178	AxBAx-Type Block–Graft Polymers with Soft Methacrylate Middle Segments and Hard Styrene Outer Grafts: Synthesis, Morphology, and Mechanical Properties. Chemistry - an Asian Journal, 2007, 2, 662-672.	1.7	22
179	Highly Efficient Synthesis of Low Polydispersity Core Cross‣inked Star Polymers by Ruâ€Catalyzed Living Radical Polymerization. Macromolecular Rapid Communications, 2011, 32, 456-461.	2.0	22
180	Enantioseparation Using Cellulose Tris(3,5-dimethylphenylcarbamate) as Chiral Stationary Phase for HPLC: Influence of Molecular Weight of Cellulose. Molecules, 2016, 21, 1484.	1.7	22

#	Article	IF	CITATIONS
181	MALDI-TOF-MS analysis of living cationic polymerization of vinyl ethers. II. Living nature of growing end and side reactions. Journal of Polymer Science Part A, 2001, 39, 1249-1257.	2.5	21
182	Living Cationic Polymerization of a Novel Bicyclic Conjugated Diene Monomer, Tetrahydroindene, and Its Block Copolymers with Vinyl Ether. Macromolecules, 2006, 39, 5280-5285.	2.2	21
183	A "ladder―Morphology in an ABC Triblock Copolymer. Macromolecular Symposia, 2006, 242, 80-86.	0.4	21
184	Preparation and chiral recognition ability of crosslinked beads of polysaccharide derivatives. Journal of Separation Science, 2007, 30, 971-978.	1.3	21
185	Direct Mechanistic Transformations from Isotactic or Syndiotactic Living Anionic Polymerizations of Methyl Methacrylate into Metal-Catalyzed Living Radical Polymerizations. ACS Macro Letters, 2013, 2, 72-76.	2.3	21
186	Olefin polymerization with Me4Cp-Amido complexes with electron-withdrawing groups. Journal of Polymer Science Part A, 2000, 38, 4649-4660.	2.5	20
187	Controlled radical polymerization of 2-hydroxyethyl methacrylate with a hydrophilic ruthenium complex and the synthesis of amphiphilic random and block copolymers with methyl methacrylate. Journal of Polymer Science Part A, 2002, 40, 2055-2065.	2.5	20
188	Well-Defined Graft Copolymers of Methacrylate, Acrylate, and Styrene via Ruthenium-Catalyzed Living Radical Polymerization. Polymer Journal, 2006, 38, 930-939.	1.3	20
189	Cycloolefin Copolymer Analogues from Styrene and Isoprene: Cationic Cyclization of the Random Copolymers Prepared by Living Anionic Polymerization. Macromolecules, 2009, 42, 620-625.	2.2	20
190	Aromatic Acetals as New Initiators for Cationic Polymerization of Isobutyl Vinyl Ether1. Macromolecules, 2000, 33, 748-753.	2.2	19
191	Helix-Sense-Selective Anionic Polymerization of a Bulky Methacrylamide Using Organozincates Having Sugar Residuesâ€. Macromolecules, 2007, 40, 3518-3520.	2.2	19
192	Acridinium salts as photoredox organocatalysts for photomediated cationic RAFT and DT polymerizations of vinyl ethers. Polymer Chemistry, 2022, 13, 1031-1039.	1.9	19
193	In-Situ Direct Analysis of the Growing Species by119Sn NMR Spectroscopy:Â Living Cationic Polymerization of Isobutyl Vinyl Ether with HCl/SnCl4/nBu4NCl1. Macromolecules, 1998, 31, 4703-4709.	2.2	18
194	Random copolymer of styrene and diene derivatives <i>via</i> anionic living polymerization followed by intramolecular Friedel–Crafts cyclization for high-performance thermoplastics. Polymer Chemistry, 2012, 3, 190-197.	1.9	18
195	Thiolâ€Ene Cationic and Radical Reactions: Cyclization, Stepâ€Growth, and Concurrent Polymerizations for Thioacetal and Thioether Units. Angewandte Chemie - International Edition, 2020, 59, 6832-6838.	7.2	18
196	Fullerene peapod nanoparticles as an organic semiconductor–electrode interface layer. Chemical Communications, 2016, 52, 3356-3359.	2.2	17
197	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 727-738.	1.1	16
198	Control of Regioselectivity and Main-Chain Microstructure in Cationic Polymerization of Cyclopentadiene1. Macromolecules, 2001, 34, 6586-6591.	2.2	16

#	Article	IF	CITATIONS
199	Helix-Sense-Selective Free Radical Polymerization of N-(Triphenylmethyl)methacrylamide Derivatives. Polymer Journal, 2006, 38, 1035-1042.	1.3	16
200	Chiral recognition ability of cellulose derivatives bearing pyridyl and bipyridyl residues as chiral stationary phases for high-performance liquid chromatography. Polymer Journal, 2011, 43, 84-90.	1.3	16
201	Stereoregular High-Density Bottlebrush Polymer and Its Organic Nanocrystal Stereocomplex through Triple-Helix Formation. Macromolecules, 2016, 49, 788-795.	2.2	16
202	Biobased Cycloolefin Polymers: Carvone-Derived Cyclic Conjugated Diene with Reactive <i>exo</i> -Methylene Group for Regioselective and Stereospecific Living Cationic Polymerization. ACS Macro Letters, 2020, 9, 1178-1183.	2.3	16
203	Construction of Vinyl Polymer and Polyester or Polyamide Units in a Single Polymer Chain via Metal-catalyzed Simultaneous Chain- and Step-growth Radical Polymerization of Various Monomers. Australian Journal of Chemistry, 2014, 67, 544.	0.5	15
204	A User-friendly Living Cationic Polymerization: Degenerative Chain-transfer Polymerization of Vinyl Ethers by Simply Using Mixtures of Weak and Superstrong Protonic Acids. Chinese Journal of Polymer Science (English Edition), 2019, 37, 851-857.	2.0	15
205	Bioâ€based vinylphenol family: Synthesis via decarboxylation of naturally occurring cinnamic acids and living radical polymerization for functionalized polystyrenes. Journal of Polymer Science, 2020, 58, 91-100.	2.0	15
206	Living cationic polymerization of vinyl ethers by electrophile/lewis acid initiating systems. VII. Living cationic polymerization of isobutyl vinyl ether by trimethylsilyl halide/zinc halide initiating systems in the presence of p-methoxybenzaldehyde: Effects of halide anions and zinc halides. Journal of Polymer Science Part A, 1991, 29, 1909-1915.	2.5	14
207	Title is missing!. Die Makromolekulare Chemie, 1993, 194, 3455-3465.	1.1	14
208	Living Radical Polymerization of Acrylates with Rhenium(V)-Based Initiating Systems: ReO ₂ 1(PPh ₃) ₂ /Alkyl Iodide. ACS Symposium Series, 2000, , 196-206.	0.5	14
209	Stereospecific Living Radical Polymerization. ACS Symposium Series, 2006, , 26-39.	0.5	14
210	Nanometer Voids Prevent Crack Growth in Polymeric Materials. Macromolecules, 2007, 40, 7433-7436.	2.2	14
211	Fully bio-based polymer blend of polyamide 11 and Poly(vinylcatechol) showing thermodynamic miscibility and excellent engineering properties. Polymer, 2019, 181, 121667.	1.8	14
212	Biobased Polymers via Radical Homopolymerization and Copolymerization of a Series of Terpenoid-Derived Conjugated Dienes with exo-Methylene and 6-Membered Ring. Molecules, 2020, 25, 5890.	1.7	14
213	Synthesis and characterization of stereoregular AABB-type polymannaramides. Journal of Polymer Science Part A, 2001, 39, 1024-1030.	2.5	13
214	Living Radical Polymerization Catalyzed with Hydrophilic and Thermosensitive Ruthenium(II) Complexes in Aqueous Media. ACS Symposium Series, 2006, , 14-25.	0.5	13
215	Spontaneous synthesis of a homogeneous thermoresponsive polymer network composed of polymers with a narrow molecular weight distribution. NPG Asia Materials, 2018, 10, 840-848.	3.8	13
216	Vinyl Ether/Vinyl Ester Copolymerization by Cationic and Radical Interconvertible Simultaneous Polymerization. ACS Symposium Series, 2018, , 323-334.	0.5	13

#	Article	IF	CITATIONS
217	Valencene as a naturally occurring sesquiterpene monomer for radical copolymerization with maleimide to induce concurrent 1:1 and 1:2 propagation. Polymer Degradation and Stability, 2019, 161, 183-190.	2.7	13
218	Ferulic acid-based reactive core–shell latex by seeded emulsion polymerization. Polymer Chemistry, 2019, 10, 3116-3126.	1.9	13
219	Synthesis and characterization of [TiF2(NMe2)2]4 and its use for olefin polymerizations. Inorganica Chimica Acta, 2003, 349, 65-68.	1.2	12
220	Living Cationic Polymerization with Yb(OSO2CF3)3 as a Water-Resistant, Recoverable Lewis Acid. ACS Symposium Series, 1997, , 106-112.	0.5	11
221	Metal-Catalyzed Step-Growth Radical Polymerization of AA and BB Monomers for Monomer Sequence Regulation. ACS Symposium Series, 2012, , 133-144.	0.5	11
222	Synthesis of Titanium-Containing Block, Random, End-Functionalized, and Junction-Functionalized Polymers via Ruthenium-Catalyzed Living Radical Polymerization and Direct Observation of Titanium Domains by Electron Microscopy. Macromolecules, 2014, 47, 944-953.	2.2	11
223	Study of the effect of isotacticity on some physical properties of poly(N-isopropylacrylamide). Colloid and Polymer Science, 2015, 293, 1749-1757.	1.0	11
224	R–Cl/SnCl ₄ / <i>n</i> -Bu ₄ NCl-induced direct living cationic polymerization of naturally-derived unprotected 4-vinylphenol, 4-vinylguaiacol, and 4-vinylcatechol in CH ₃ CN. Polymer Chemistry, 2019, 10, 1192-1201.	1.9	11
225	Asymmetric Cationic Polymerization of Benzofuran through a Reversible Chain-Transfer Mechanism: Optically Active Polybenzofuran with Controlled Molecular Weights. Journal of the American Chemical Society, 2022, 144, 10429-10437.	6.6	11
226	Living cationic polymerization of vinyl ethers by electrophile/lewis acid initiating systems. XII. Phosphoric and phosphinic acids/zinc chloride initiating systems for isobutyl vinyl ether. Journal of Polymer Science Part A, 1993, 31, 2987-2994.	2.5	10
227	Living cationic polymerization of isobutyl vinyl ether by the CF3CO2H-SnCl4-nBu4NCl system:In situ direct analysis of the growing species by1H,13C and19F NMR spectroscopy. Journal of Physical Organic Chemistry, 1995, 8, 282-292.	0.9	10
228	Living radical and cationic polymerizations in water and organic media. Macromolecular Symposia, 2002, 177, 17-24.	0.4	10
229	Enantioseparation using amylose esters as chiral stationary phases for high-performance liquid chromatography. Polymer Journal, 2010, 42, 31-36.	1.3	10
230	Intramolecular friedelâ€crafts cyclization and subsequent hydrogenation of styreneâ€isoprene random copolymers prepared by anionic polymerization for thermallyâ€resistant and optical applications. Journal of Polymer Science Part A, 2012, 50, 1298-1307.	2.5	10
231	Bioâ€Based Polyketones by Selective Ringâ€Opening Radical Polymerization of αâ€Pineneâ€Derived Pinocarvone Angewandte Chemie, 2016, 128, 1394-1398.	1.6	10
232	BABâ€ <i>random</i> Monomer Sequence via Radical Terpolymerization of Limoneneâ€(A), Maleimideâ€(E and Methacrylateâ€(C): Terpene Polymers with Randomly Distributed Periodic Sequences. Angewandte Chemie, 2017, 129, 1815-1819.	8), 1.6	10
233	Naturally-Derived Amphiphilic Polystyrenes Prepared by Aqueous Controlled/Living Cationic Polymerization and Copolymerization of Vinylguaiacol with R–OH/BF3·OEt2. Polymers, 2018, 10, 1404.	2.0	10
234	Cationic Polymerization via Activation of Alkoxyamines Using Photoredox Catalysts. ChemPhotoChem, 2019, 3, 1100-1108.	1.5	10

#	Article	IF	CITATIONS
235	Controlled synthesis of functionalized polymers by transition-metal-mediated living radical polymerization. Macromolecular Symposia, 2000, 161, 11-18.	0.4	9
236	Local Chain Dynamics of Poly(N-vinylcarbazole) Studied by the Fluorescence Depolarization Method. Polymer Journal, 2001, 33, 464-468.	1.3	9
237	Synthesis of Side-Chain-Sequenced Copolymers Using Vinyl Oligomonomers via Sequential Single-Monomer ATRA. ACS Symposium Series, 2014, , 189-200.	0.5	9
238	Precision Polymerization and Polymers II. Living Radical Polymerization with Transition Metal Complexes Kobunshi Ronbunshu, 1997, 54, 875-885.	0.2	8
239	Synthesis of end-functionalized polymers and copolymers of cyclopentadiene with vinyl ethers by cationic polymerization. Journal of Polymer Science Part A, 2001, 39, 398-407.	2.5	8
240	Helical Structure of Liquid Crystalline Poly(N-((4-n-butylphenyl)diphenylmethyl) methacrylamide). Macromolecules, 2010, 43, 7386-7390.	2.2	8
241	In Situ Direct Mechanistic Transformation from FeCl ₃ atalyzed Living Cationic to Radical Polymerizations. Macromolecular Symposia, 2013, 323, 64-74.	0.4	8
242	Synthesis of Isotactic-block-Syndiotactic Poly(methyl Methacrylate) via Stereospecific Living Anionic Polymerizations in Combination with Metal-Halogen Exchange, Halogenation, and Click Reactions. Polymers, 2017, 9, 723.	2.0	8
243	Living Radical Polymerization of Styrene: RuCl2(PPh3)3 and Alkyl Iodide-Based Initiating Systems. ACS Symposium Series, 2000, , 168-181.	0.5	7
244	MALDI-TOF-MS analysis of living cationic polymerization of vinyl ethers. III. Polymerization with SnCl4 and TiCl4 in the absence of additives. Journal of Polymer Science Part A, 2001, 39, 1258-1267.	2.5	7
245	Recent Developments in Transition Metal-Catalyzed Polymerization I. Recent Development of Transition Metal-Catalyzed Living Radical Polymerization-Design and Development of the Metal Complexes Kobunshi Ronbunshu, 2002, 59, 199-211.	0.2	7
246	A bicyclic conjugated diene monomer, tetrahydroindene, for cationic polymerization and a novel alicyclic hydrocarbon polymer with heat resistance. Journal of Polymer Science Part A, 2006, 44, 6214-6225.	2.5	7
247	Thiourea-Mediated Stereospecific Radical Polymerization of Acrylamides and Combination with RAFT for Simultaneous Control of Molecular Weight and Tacticity. ACS Symposium Series, 2009, , 49-63.	0.5	7
248	Cross-linked nanocellular polymer films: water- and oil-repellent anti-reflection coating. Polymer Journal, 2016, 48, 497-501.	1.3	7
249	Helixâ€senseâ€selective copolymerization of triphenylmethyl methacrylate with chiral 2â€isopropenylâ€4â€phenylâ€2â€oxazoline. Journal of Polymer Science Part A, 2019, 57, 441-447.	2.5	7
250	Epoxy-functionalised 4-vinylguaiacol for the synthesis of bio-based, degradable star polymers via a RAFT/ROCOP strategy. Polymer Chemistry, 2020, 11, 5844-5850.	1.9	7
251	Bio-based Hydrocarbon Polymers. , 2015, , 109-118.		7
252	Amphiphilic 3-Arm Star Block Polymers by Living Cationic Polymerization. Polymer Journal, 1999, 31, 995-1000.	1.3	6

Masami Kamigaito

#	Article	IF	CITATIONS
253	Living Radical Polymerization with Designed Metal Complexes. ACS Symposium Series, 2003, , 102-115.	0.5	6
254	Asymmetric anionic polymerization of tris(trimethylsilyl)silyl methacrylate: a highly isotactic helical chiral polymer. Polymer Journal, 2013, 45, 676-680.	1.3	6
255	Sequence-regulated vinyl polymers via iterative atom transfer radical additions and acyclic diene metathesis polymerization. Polymer Chemistry, 2021, 12, 423-431.	1.9	6
256	Terpenoid-derived conjugated dienes with <i>exo</i> -methylene and a 6-membered ring: high cationic reactivity, regioselective living cationic polymerization, and random and block copolymerization with vinyl ethers. Polymer Chemistry, 2021, 12, 1186-1198.	1.9	6
257	Nonturbid Fast Temperature-Responsive Hydrogels with Homogeneous Three-Dimensional Networks by Two Types of Star Polymer Synthesis Methods. Macromolecules, 2021, 54, 5750-5764.	2.2	6
258	Mechanical Properties of Homogeneous Polymer Networks Prepared by Star Polymer Synthesis Methods. Macromolecules, 2021, 54, 10468-10476.	2.2	6
259	Ru(II)-mediated living radical polymerization: block and random copolymerizations ofN,N-dimethylacrylamide and methyl methacrylate. Macromolecular Symposia, 2000, 157, 193-200.	0.4	5
260	Helicity Induction in N-[(4-Butyl)triphenylmethyl]methacrylamide Sequence via Radical Copolymerization with Chiral Monomers. Polymer Journal, 2006, 38, 1173-1181.	1.3	5
261	Controlled Polymerization: Beyond Traditional RAFT: Alternative Activation of Thiocarbonylthio Compounds for Controlled Polymerization (Adv. Sci. 9/2016). Advanced Science, 2016, 3, .	5.6	5
262	Light Leads to Ultra-Long Polymer Chains in Water. CheM, 2017, 2, 13-15.	5.8	5
263	Cooperative reduction of various RAFT polymer terminals using hydrosilane and thiol <i>via</i> polarity reversal catalysis. Chemical Communications, 2019, 55, 5327-5330.	2.2	5
264	Model and Terpenoid-Derived <i>exo</i> -Methylene Six-Membered Conjugated Dienes: Comprehensive Studies on Cationic and Radical Polymerizations of Substituted 3-Methylenecyclohexenes. Macromolecules, 2022, 55, 2300-2309.	2.2	5
265	Living Radical Polymerization Mediated by Transition Metals: Recent Advances. ACS Symposium Series, 1998, , 296-304.	0.5	4
266	Precision Control in Radical Polymerization-Control of Molecular Weight, Stereochemistry, and Monomer Sequence Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2008, 66, 578-589.	0.0	4
267	Controlled/Living Polymerization of Naturally Occurring Terpenes. Kobunshi Ronbunshu, 2015, 72, 421-432.	0.2	4
268	Synthesis of Syndiotactic Macrocyclic Poly(methyl methacrylate) via Transformation of the Growing Terminal in Stereospecific Anionic Polymerization. Macromolecular Chemistry and Physics, 2017, 218, 1700041.	1.1	4
269	1:3 ABAA sequence-regulated substituted polymethylenes via alternating radical copolymerization of methyl cinnamate and maleic anhydride followed by post-polymerization reactions. European Polymer Journal, 2019, 120, 109225.	2.6	4
270	Direct through anionic, cationic, and radical active species: Terminal carbon–halogen bond for "controlledâ€∤living polymerizations of styrene. Journal of Polymer Science Part A, 2019, 57, 465-473.	2.5	4

#	Article	IF	CITATIONS
271	Hybridization of Step″Chainâ€Growth and Radical/Cationic Polymerizations Using Thioacetals as Key Components for Triblock, Periodic and Random Multiblock Copolymers with Thermoresponsiveness. Macromolecular Rapid Communications, 2021, 42, e2100192.	2.0	4
272	Living Radical Polymerization via Reversible Homolytic Activation of Carbon-Halogen Bonds with Metal Complexes. , 1996, , 11-20.		4
273	Titaniumâ€based lewis acids for living cationic polymerizations of vinyl ethers and styrene: Control of lewis acidity in design of initiating systems. Macromolecular Symposia, 1995, 98, 153-161.	0.4	3
274	Cationic polymerization with titanium(iv) compounds: Living polymerization and possibility of stereoregulation. Macromolecular Symposia, 1996, 107, 43-51.	0.4	3
275	A Neutron Reflectivity Study on a Terraced Lamellar Morphology in a Block Copolymer Thin Film. Polymer Journal, 2007, 39, 1105-1111.	1.3	3
276	Metal-catalyzed living radical polymerization and radical polyaddition for precision polymer synthesis. Journal of Physics: Conference Series, 2009, 184, 012025.	0.3	3
277	Control of stereochemistry in atom transfer radical addition and step-growth radical polymerization by chiral transition metal catalysts. Tetrahedron, 2016, 72, 7657-7664.	1.0	3
278	Synthesis and stereocomplexation of <scp>PMMA</scp> â€based star polymers prepared by a combination of stereospecific anionic polymerization and crosslinking radical polymerization. Journal of Polymer Science Part A, 2018, 56, 1123-1127.	2.5	3
279	Periodically Functionalized Sequenceâ€Regulated Vinyl Polymers via Iterative Atom Transfer Radical Additions and Acyclic Diene Metathesis Polymerization. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	3
280	Living Cationic Polymerization of α-Methylstyrene. 2. Synthesis of Block and Random Copolymers with 2-Chloroethyl Vinyl Ether and End-Functionauzed Polymersâ€. Journal of Macromolecular Science - Pure and Applied Chemistry, 1994, 31, 937-951.	1.2	2
281	Controlled radical polymerization of styrene with magnetic iron oxides prepared through hydrothermal, bioinspired, and bacterial processes. RSC Advances, 2015, 5, 51122-51129.	1.7	2
282	Periodic Introduction of Water-Tolerant Titanatrane Complex to Poly(NIPAM) Prepared by Simultaneous Step-Growth and Living Radical Polymerization. ACS Symposium Series, 2015, , 1-14.	0.5	2
283	Thiolâ€Ene Cationic and Radical Reactions: Cyclization, Stepâ€Growth, and Concurrent Polymerizations for Thioacetal and Thioether Units. Angewandte Chemie, 2020, 132, 6899-6905.	1.6	2
284	Living radical polymerization of methyl methacrylate with a zerovalent nickel complex, Ni(PPh3). , 1999, 37, 3003.		2
285	Metal-Free Living Cationic Polymerization via Carbon-Sulfur Bonds (1). Nippon Gomu Kyokaishi, 2015, 88, 391-396.	0.0	2
286	Transition Metal-Catalyzed Step-Growth Radical Polymerization. Kobunshi Ronbunshu, 2011, 68, 436-456.	0.2	1
287	Living Radical Polymerization: Atom Transfer Radical Polymerization. , 2014, , 1-13.		1
288	Innentitelbild: BABâ€ <i>random</i> Monomer Sequence via Radical Terpolymerization of Limoneneâ€(A), Maleimideâ€(B), and Methacrylateâ€(C): Terpene Polymers with Randomly Distributed Periodic Sequences (Angew. Chem. 7/2017). Angewandte Chemie, 2017, 129, 1702-1702.	1.6	1

#	Article	IF	CITATIONS
289	Matrix-assisted laser desorption ionization time of flight mass spectrometry analysis of living cationic polymerization of vinyl ethers. I. Optimization of measurement conditions for poly(isobutyl) Tj ETQq1 1	0.784314	rgBT /Overlo
290	Metal-Containing Star and Hyperbranched Polymers. , 2006, , 233-247.		1
291	Bio-based Hydrocarbon Polymers. , 2015, , 1-10.		1
292	Living Cationic Polymerization of α-Methylstyrene. 2. Synthesis of Block and Random Copolymers with 2-Chloroethyl Vinyl Ether and End-Functionalized Polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 1994, 31, 937-951.	1.2	1
293	2.ãfªãf"ãf³ã,°ãf©ã,,ã,«ãf«é‡å•ã®åŸºçŽãë展開. Journal of the Japan Society of Colour Material, 2008, 81, 4	5994770.	1
294	Living Polymerization in Water Kobunshi, 2003, 52, 246-250.	0.0	0
295	Titanium Alkoxides for the Fast Ruthenium-Catalyzed Living Radical Polymerization of Methyl Methacrylate. Kobunshi Ronbunshu, 2004, 61, 256-262.	0.2	0
296	Inside Cover: Nano-to-Macroscale Poly(methyl methacrylate) Stereocomplex Assemblies (Angew. Chem.) Tj ETQq	0 0 0 rgBT	Qverlock 1
297	Sequence-Controlled Vinyl Polymers by Transition Metal-Catalyzed Step-Growth and Living Radical Polymerizations. Materials Research Society Symposia Proceedings, 2014, 1613, 17-21.	0.1	0
298	Metal-Free Living Cationic Polymerization via Carbon-Sulfur Bonds (2). Nippon Gomu Kyokaishi, 2015, 88, 461-465.	0.0	0
299	Halogenation of Propagating Terminal in Anionic Polymerization of Isoprene for the Synthesis of Block Copolymers. Kobunshi Ronbunshu, 2019, 76, 234-240.	0.2	0
300	Cationic Polymerization via Activation of Alkoxyamines Using Photoredox Catalysts. ChemPhotoChem, 2019, 3, 1058-1058.	1.5	0
301	Professor Mitsuo Sawamotoâ€∢i>sensei and innovator in polymer synthesis. Journal of Polymer Science Part A, 2019, 57, 197-198.	2.5	0
302	Bioâ€based vinylphenol family: Synthesis via decarboxylation of naturally occurring cinnamic acids and living radical polymerization for functionalized polystyrenes. Journal of Polymer Science, 2020, 58, 91-100.	2.0	0
303	Metal-Free Living Cationic Polymerization via Degenerative Chain-Transfer Mechanism. Journal of the Adhesion Society of Japan, 2017, 53, 179-187.	0.0	0
304	One-pot synthesis of structure-controlled temperature-responsive polymer gels. Polymer Chemistry, 0, , .	1.9	0