Xiaoli Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1236927/publications.pdf

Version: 2024-02-01

		840776	713466
31	453	11	21
papers	citations	h-index	g-index
31	31	31	186
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Exponential Scalar Auxiliary Variable (E-SAV) Approach for Phase Field Models and Its Explicit Computing. SIAM Journal of Scientific Computing, 2020, 42, B630-B655.	2.8	83
2	Efficient modified techniques of invariant energy quadratization approach for gradient flows. Applied Mathematics Letters, 2019, 98, 206-214.	2.7	44
3	Efficient modified stabilized invariant energy quadratization approaches for phase-field crystal equation. Numerical Algorithms, 2020, 85, 107-132.	1.9	40
4	A Two-Grid Block-Centered Finite Difference Method for the Nonlinear Time-Fractional Parabolic Equation. Journal of Scientific Computing, 2017, 72, 863-891.	2.3	34
5	A Crank–Nicolson difference scheme for the time variable fractional mobile–immobile advection–dispersion equation. Journal of Applied Mathematics and Computing, 2018, 56, 391-410.	2.5	28
6	Block-Centered Finite Difference Method for Simulating Compressible Wormhole Propagation. Journal of Scientific Computing, 2018, 74, 1115-1145.	2.3	26
7	Two fast and efficient linear semi-implicit approaches with unconditional energy stability for nonlocal phase field crystal equation. Applied Numerical Mathematics, 2020, 150, 491-506.	2.1	24
8	A second-order finite difference scheme for quasilinear time fractional parabolic equation based on new fractional derivative. International Journal of Computer Mathematics, 2018, 95, 396-411.	1.8	20
9	The fast scalar auxiliary variable approach with unconditional energy stability for nonlocal Cahn–Hilliard equation. Numerical Methods for Partial Differential Equations, 2021, 37, 244-261.	3.6	17
10	Characteristic block-centred finite difference methods for nonlinear convection-dominated diffusion equation. International Journal of Computer Mathematics, 2017, 94, 386-404.	1.8	16
11	Step-by-step solving schemes based on scalar auxiliary variable and invariant energy quadratization approaches for gradient flows. Numerical Algorithms, 2022, 89, 65-86.	1.9	13
12	On fully decoupled MSAV schemes for the Cahn–Hilliard–Navier–Stokes model of two-phase incompressible flows. Mathematical Models and Methods in Applied Sciences, 2022, 32, 457-495.	3.3	12
13	Two alternating direction implicit spectral methods for two-dimensional distributed-order differential equation. Numerical Algorithms, 2019, 82, 321-347.	1.9	11
14	Error analysis of the SAV Fourier-spectral method for the Cahn-Hilliard-Hele-Shaw system. Advances in Computational Mathematics, 2021, 47, 1.	1.6	9
15	A fastâ€high order compact difference method for the fractional cable equation. Numerical Methods for Partial Differential Equations, 2018, 34, 2237-2266.	3.6	8
16	A fully conservative block-centered finite difference method for simulating Darcy-Forchheimer compressible wormhole propagation. Numerical Algorithms, 2019, 82, 451-478.	1.9	8
17	A fully conservative blockâ€centered finite difference method for Darcy–Forchheimer incompressible miscible displacement problem. Numerical Methods for Partial Differential Equations, 2020, 36, 66-85.	3.6	8
18	Efficient linear and unconditionally energy stable schemes for the modified phase field crystal equation. Science China Mathematics, 2022, 65, 2201-2218.	1.7	7

#	Article	IF	Citations
19	New efficient and unconditionally energy stable schemes for the Cahn–Hilliard–Brinkman system. Applied Mathematics Letters, 2022, 128, 107918.	2.7	7
20	Two temporal second-order H1-Galerkin mixed finite element schemes for distributed-order fractional sub-diffusion equations. Numerical Algorithms, 2018, 79, 1107-1130.	1.9	6
21	Accurate and efficient algorithms with unconditional energy stability for the time fractional Cahn–Hilliard and Allen–Cahn equations. Numerical Methods for Partial Differential Equations, 2021, 37, 2613-2633.	3.6	6
22	A block-centred finite difference method for the distributed-order differential equation with Neumann boundary condition. International Journal of Computer Mathematics, 2019, 96, 622-639.	1.8	5
23	Stability and convergence based on the finite difference method for the nonlinear fractional cable equation on non-uniform staggered grids. Applied Numerical Mathematics, 2020, 152, 403-421.	2.1	5
24	Superconvergence of MAC Scheme for a Coupled Free Flow-Porous Media System with Heat Transport on Non-uniform Grids. Journal of Scientific Computing, 2022, 90, 1.	2.3	5
25	A blockâ€centered finite difference method for fractional Cattaneo equation. Numerical Methods for Partial Differential Equations, 2018, 34, 296-316.	3.6	3
26	A block-centered finite difference method for the nonlinear Sobolev equation on nonuniform rectangular grids. Applied Mathematics and Computation, 2019, 363, 124607.	2.2	3
27	Energy stability and convergence of the scalar auxiliary variable Fourierâ€spectral method for the viscous Cahn–Hilliard equation. Numerical Methods for Partial Differential Equations, 2020, 36, 998-1011.	3.6	2
28	A fast discontinuous finite element discretization for the spaceâ€time fractional diffusionâ€wave equation. Numerical Methods for Partial Differential Equations, 2017, 33, 2043-2061.	3.6	1
29	A Fast Finite Difference Method for a Continuous Static Linear Bond-Based Peridynamics Model of Mechanics. Journal of Scientific Computing, 2018, 74, 728-742.	2.3	1
30	Modified marker and cell schemes for Stokes equations with Dirichlet boundary condition. Mathematical Methods in the Applied Sciences, 2022, 45, 10384-10407.	2.3	1
31	Error estimate of finite difference method for the nonlinear distributed-ordered diffusion equation on staggered grids. International Journal of Computer Mathematics, 0, , 1-0.	1.8	0