Thorsten Michler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1236866/publications.pdf Version: 2024-02-01

THOPSTEN MICHLER

#	Article	IF	CITATIONS
1	Stress-based approach for fatigue life calculation of multi-material connections hybrid joined by self-piercing rivets and adhesive. Thin-Walled Structures, 2021, 159, 107192.	2.7	10
2	Review on the Influence of Temperature upon Hydrogen Effects in Structural Alloys. Metals, 2021, 11, 423.	1.0	9
3	Review and Assessment of the Effect of Hydrogen Gas Pressure on the Embrittlement of Steels in Gaseous Hydrogen Environment. Metals, 2021, 11, 637.	1.0	24
4	Effect of Hydrogen in Mixed Gases on the Mechanical Properties of Steels—Theoretical Background and Review of Test Results. Metals, 2021, 11, 1847.	1.0	3
5	Fatigue life performance of multi-material connections hybrid joined by self-piercing rivets and adhesive. Materialpruefung/Materials Testing, 2020, 62, 973-978.	0.8	1
6	Relationship between hydrogen embrittlement and Md30 temperature: Prediction of low-nickel austenitic stainless steel's resistance. International Journal of Hydrogen Energy, 2019, 44, 25064-25075.	3.8	26
7	Role of surface oxide layers in the hydrogen embrittlement of austenitic stainless steels: A TOF-SIMS study. Acta Materialia, 2019, 180, 329-340.	3.8	5
8	Enhancements of a Stress-Based Approach for Fatigue Life Estimation of Multi-Material Connections Joined by Self-Piercing Rivets and Adhesive. Procedia Structural Integrity, 2019, 19, 423-432.	0.3	6
9	Local strains in 1.4301 austenitic stainless steel with internal hydrogen. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 447-455.	2.6	11
10	Influence of frequency and wave form on S-N fatigue of commercial austenitic stainless steels with different nickel contents in inert gas and in high pressure gaseous hydrogen. International Journal of Fatigue, 2017, 96, 67-77.	2.8	14
11	Microstructure, deformation mechanisms and influence of hydrogen on tensile properties of the Co based super alloy DIN 2.4711/UNS N30003. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 662, 36-45.	2.6	2
12	Microstructural properties controlling hydrogen environment embrittlement of cold worked 316 type austenitic stainless steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 252-261.	2.6	46
13	Hydrogen environment embrittlement of solution treated Fe–Cr–Ni super alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 607, 71-80.	2.6	15
14	Influence of gaseous hydrogen on the tensile properties of Fe–36Ni INVAR alloy. International Journal of Hydrogen Energy, 2014, 39, 11807-11809.	3.8	4
15	S–N fatigue properties of a stable high-aluminum austenitic stainless steel for hydrogen applications. International Journal of Hydrogen Energy, 2013, 38, 9935-9941.	3.8	13
16	Influence of high pressure gaseous hydrogen on S–N fatigue in two austenitic stainless steels. International Journal of Fatigue, 2013, 51, 1-7.	2.8	30
17	Influence of copper as an alloying element on hydrogen environment embrittlement of austenitic stainless steel. International Journal of Hydrogen Energy, 2012, 37, 12765-12770.	3.8	10
18	Hydrogen environment embrittlement of stable austenitic steels. International Journal of Hydrogen Energy, 2012, 37, 16231-16246.	3.8	164

THORSTEN MICHLER

#	ARTICLE	IF	CITATIONS
19	Assessing the effect of low oxygen concentrations in gaseous hydrogen embrittlement of DIN 1.4301 and 1.1200 steels at high gas pressures. Corrosion Science, 2012, 65, 169-177.	3.0	14
20	Analysis of martensitic transformation in 304 type stainless steels tensile tested in high pressure hydrogen atmosphere by means of XRD and magnetic induction. International Journal of Hydrogen Energy, 2012, 37, 3567-3572.	3.8	31
21	Hydrogen embrittlement of Cr-Mn-N-austenitic stainless steels. International Journal of Hydrogen Energy, 2010, 35, 1485-1492.	3.8	56
22	Microstructural aspects upon hydrogen environment embrittlement of various bcc steels. International Journal of Hydrogen Energy, 2010, 35, 821-832.	3.8	164
23	Hydrogen environment embrittlement of an ODS RAF steel – Role of irreversible hydrogen trap sites. International Journal of Hydrogen Energy, 2010, 35, 9746-9754.	3.8	54
24	Influence of high pressure hydrogen on the tensile and fatigue properties of a high strength Cu–Al–Ni–Fe alloy. International Journal of Hydrogen Energy, 2010, 35, 11373-11377.	3.8	12
25	Influence of macro segregation on hydrogen environment embrittlement of SUS 316L stainless steel. International Journal of Hydrogen Energy, 2009, 34, 3201-3209.	3.8	98
26	Hydrogen environment embrittlement of orbital welded austenitic stainless steels at â^'50°C. International Journal of Hydrogen Energy, 2009, 34, 6478-6483.	3.8	13
27	Coatings to reduce hydrogen environment embrittlement of 304 austenitic stainless steel. Surface and Coatings Technology, 2009, 203, 1819-1828.	2.2	49
28	Influence of plasma nitriding on hydrogen environment embrittlement of 1.4301 austenitic stainless steel. Surface and Coatings Technology, 2008, 202, 1688-1695.	2.2	33
29	Plasma nitrided austenitic stainless steels for automotive hydrogen applications. Surface and Coatings Technology, 2008, 203, 897-900.	2.2	22
30	Hydrogen environment embrittlement of austenitic stainless steels at low temperatures. International Journal of Hydrogen Energy, 2008, 33, 2111-2122.	3.8	98
31	Hydrogen environment embrittlement testing at low temperatures and high pressures. Corrosion Science, 2008, 50, 3519-3526.	3.0	77
32	Toughness and hydrogen compatibility of austenitic stainless steel welds at cryogenic temperatures. International Journal of Hydrogen Energy, 2007, 32, 4081-4088.	3.8	16