Longping V Tse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1236572/publications.pdf

Version: 2024-02-01

257450 434195 7,887 32 24 31 citations h-index g-index papers 42 42 42 16211 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell, 2020, 183, 996-1012.e19.	28.9	1,494
2	SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell, 2020, 182, 429-446.e14.	28.9	1,257
3	SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science, 2020, 370, 1464-1468.	12.6	808
4	The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Science Immunology, 2020, 5, .	11.9	772
5	Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science, 2020, 369, 731-736.	12.6	534
6	A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice. Cell, 2020, 183, 1070-1085.e12.	28.9	472
7	Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. Cell, 2020, 183, 1367-1382.e17.	28.9	420
8	Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science, 2021, 371, 823-829.	12.6	285
9	InÂvitro and inÂvivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 2021, 184, 4203-4219.e32.	28.9	228
10	\hat{l}^2 - <scp>d</scp> - <i>N</i> 4-hydroxycytidine Inhibits SARS-CoV-2 Through Lethal Mutagenesis But Is Also Mutagenic To Mammalian Cells. Journal of Infectious Diseases, 2021, 224, 415-419.	4.0	211
11	Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature, 2021, 594, 553-559.	27.8	199
12	Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4812-E4821.	7.1	152
13	Adeno-associated viral vector-mediated immune responses: Understanding barriers to gene delivery. , 2020, 207, 107453.		108
14	Modifications to the Hemagglutinin Cleavage Site Control the Virulence of a Neurotropic H1N1 Influenza Virus. Journal of Virology, 2010, 84, 8683-8690.	3.4	92
15	The Current and Future State of Vaccines, Antivirals and Gene Therapies Against Emerging Coronaviruses. Frontiers in Microbiology, 2020, 11, 658.	3.5	86
16	A Novel Activation Mechanism of Avian Influenza Virus H9N2 by Furin. Journal of Virology, 2014, 88, 1673-1683.	3.4	71
17	Evaluation of Cell-Based and Surrogate SARS-CoV-2 Neutralization Assays. Journal of Clinical Microbiology, 2021, 59, e0052721.	3.9	71
18	Repurposing the Ebola and Marburg Virus Inhibitors Tilorone, Quinacrine, and Pyronaridine: <i>In Vitro</i> Activity against SARS-CoV-2 and Potential Mechanisms. ACS Omega, 2021, 6, 7454-7468.	3.5	56

#	Article	lF	CITATIONS
19	Strategies to circumvent humoral immunity to adeno-associated viral vectors. Expert Opinion on Biological Therapy, 2015, 15, 845-855.	3.1	49
20	Targeted isolation of diverse human protective broadly neutralizing antibodies against SARS-like viruses. Nature Immunology, 2022, 23, 960-970.	14.5	39
21	Diversity-Generating Retroelement Homing Regenerates Target Sequences for Repeated Rounds of Codon Rewriting and Protein Diversification. Molecular Cell, 2008, 31, 813-823.	9.7	38
22	Coevolution of Adeno-associated Virus Capsid Antigenicity and Tropism through a Structure-Guided Approach. Journal of Virology, 2020, 94, .	3.4	38
23	Equine and Canine Influenza H3N8 Viruses Show Minimal Biological Differences Despite Phylogenetic Divergence. Journal of Virology, 2015, 89, 6860-6873.	3.4	36
24	Target Site Recognition by a Diversity-Generating Retroelement. PLoS Genetics, 2011, 7, e1002414.	3.5	29
25	Plasmin-Mediated Activation of Pandemic H1N1 Influenza Virus Hemagglutinin Is Independent of the Viral Neuraminidase. Journal of Virology, 2013, 87, 5161-5169.	3.4	29
26	Identification of Dengue Virus Serotype 3 Specific Antigenic Sites Targeted by Neutralizing Human Antibodies. Cell Host and Microbe, 2020, 27, 710-724.e7.	11.0	25
27	Ring finger protein 121 is a potent regulator of adeno-associated viral genome transcription. PLoS Pathogens, 2019, 15, e1007988.	4.7	22
28	Genomewide CRISPR knockout screen identified PLAC8 as an essential factor for SADS-CoVs infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118126119.	7.1	17
29	Virus Binding and Internalization Assay for Adeno-associated Virus. Bio-protocol, 2017, 7, .	0.4	16
30	Mapping and Engineering Functional Domains of the Assembly-Activating Protein of Adeno-associated Viruses. Journal of Virology, 2018, 92, .	3.4	15
31	Modification of the hemagglutinin cleavage site allows indirect activation of avian influenza virus H9N2 by bacterial staphylokinase. Virology, 2015, 482, 1-8.	2.4	14
32	Generation of Mature DENVs via Genetic Modification and Directed Evolution. MBio, 2022, 13, e0038622.	4.1	11