Lorena M Amaral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1236141/publications.pdf Version: 2024-02-01

LODENA M AMADAL

#	Article	IF	CITATIONS
1	The role of inflammation in the pathology of preeclampsia. Clinical Science, 2016, 130, 409-419.	4.3	379
2	Pathophysiology and Current Clinical Management of Preeclampsia. Current Hypertension Reports, 2017, 19, 61.	3.5	175
3	Preeclampsia: long-term consequences for vascular health. Vascular Health and Risk Management, 2015, 11, 403.	2.3	116
4	Role of Mitochondrial Dysfunction and Reactive Oxygen Species in Mediating Hypertension in the Reduced Uterine Perfusion Pressure Rat Model of Preeclampsia. Hypertension, 2018, 72, 703-711.	2.7	112
5	ldentifying immune mechanisms mediating the hypertension during preeclampsia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R1-R9.	1.8	74
6	An increased population of regulatory T cells improves the pathophysiology of placental ischemia in a rat model of preeclampsia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R884-R891.	1.8	68
7	Reduced uterine perfusion pressure T-helper 17 cells cause pathophysiology associated with preeclampsia during pregnancy. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R1192-R1199.	1.8	61
8	Inflammatory mediators: a causal link to hypertension during preeclampsia. British Journal of Pharmacology, 2019, 176, 1914-1921.	5.4	59
9	AT1-AA (Angiotensin II Type 1 Receptor Agonistic Autoantibody) Blockade Prevents Preeclamptic Symptoms in Placental Ischemic Rats. Hypertension, 2018, 71, 886-893.	2.7	56
10	Placental Ischemia and Resultant Phenotype in Animal Models of Preeclampsia. Current Hypertension Reports, 2016, 18, 38.	3.5	52
11	17-Hydroxyprogesterone Caproate Significantly Improves Clinical Characteristics of Preeclampsia in the Reduced Uterine Perfusion Pressure Rat Model. Hypertension, 2015, 65, 225-231.	2.7	51
12	Agonistic Autoantibodies to the Angiotensin II Type 1 Receptor Enhance Angiotensin II–Induced Renal Vascular Sensitivity and Reduce Renal Function During Pregnancy. Hypertension, 2016, 68, 1308-1313.	2.7	44
13	Natural killer cells mediate pathophysiology in response to reduced uterine perfusion pressure. Clinical Science, 2017, 131, 2753-2762.	4.3	44
14	Vitamin D supplementation improves pathophysiology in a rat model of preeclampsia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R346-R354.	1.8	33
15	Renal natural killer cell activation and mitochondrial oxidative stress; new mechanisms in AT1-AA mediated hypertensive pregnancy. Pregnancy Hypertension, 2019, 15, 72-77.	1.4	32
16	Serelaxin improves the pathophysiology of placental ischemia in the reduced uterine perfusion pressure rat model of preeclampsia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R1158-R1163.	1.8	30
17	Progesterone supplementation attenuates hypertension andÂthe autoantibody to the angiotensin II type I receptor inÂresponse to elevated interleukin-6 during pregnancy. American Journal of Obstetrics and Gynecology, 2014, 211, 158.e1-158.e6.	1.3	26
18	Blockade of endogenous angiotensin II type I receptor agonistic autoantibody activity improves mitochondrial reactive oxygen species and hypertension in a rat model of preeclampsia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R256-R262.	1.8	26

#	Article	IF	CITATIONS
19	Interleukin-4 supplementation improves the pathophysiology of hypertension in response to placental ischemia in RUPP rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R165-R171.	1.8	24
20	Proliferation of endogenous regulatory T cells improve the pathophysiology associated with placental ischaemia of pregnancy. American Journal of Reproductive Immunology, 2017, 78, e12724.	1.2	22
21	Continued Investigation Into 17-OHPC. Hypertension, 2017, 70, 1250-1255.	2.7	20
22	Tumor necrosis factor alpha (TNF-α) blockade improves natural killer cell (NK) activation, hypertension, and mitochondrial oxidative stress in a preclinical rat model of preeclampsia. Hypertension in Pregnancy, 2020, 39, 399-404.	1.1	19
23	Blockade of CD40 ligand for intercellular communication reduces hypertension, placental oxidative stress, and AT ₁ -AA in response to adoptive transfer of CD4 ⁺ T lymphocytes from RUPP rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015. 309. R1243-R1250.	1.8	17
24	17-Hydroxyprogesterone caproate improves T cells and NK cells in response to placental ischemia; new mechanisms of action for an old drug. Pregnancy Hypertension, 2020, 19, 226-232.	1.4	16
25	Vitamin D supplementation reduces some AT ₁ -AA-induced downstream targets implicated in preeclampsia including hypertension. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R125-R131.	1.8	15
26	CD4+ T cells cause renal and placental mitochondrial oxidative stress as mechanisms of hypertension in response to placental ischemia. American Journal of Physiology - Renal Physiology, 2021, 320, F47-F54.	2.7	15
27	Natural killer cells contribute to mitochondrial dysfunction in response to placental ischemia in reduced uterine perfusion pressure rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R441-R447.	1.8	14
28	Progesterone-induced blocking factor improves blood pressure, inflammation, and pup weight in response to reduced uterine perfusion pressure (RUPP). American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R719-R727.	1.8	14
29	The role of tumor necrosis factor in triggering activation of natural killer cell, multi-organ mitochondrial dysfunction and hypertension during pregnancy. Pregnancy Hypertension, 2021, 24, 65-72.	1.4	14
30	Placental CD4+ T cells isolated from preeclamptic women cause preeclampsia-like symptoms in pregnant nude-athymic rats. Pregnancy Hypertension, 2019, 15, 7-11.	1.4	13
31	Adoptive transfer of placental ischemiaâ€stimulated natural killer cells causes a preeclampsiaâ€like phenotype in pregnant rats. American Journal of Reproductive Immunology, 2021, 85, e13386.	1.2	13
32	Characterization of Mitochondrial Bioenergetics in Preeclampsia. Journal of Clinical Medicine, 2021, 10, 5063.	2.4	13
33	Circulating Total Cell-Free DNA Levels Are Increased in Hypertensive Disorders of Pregnancy and Associated with Prohypertensive Factors and Adverse Clinical Outcomes. International Journal of Molecular Sciences, 2021, 22, 564.	4.1	11
34	Vascular endothelial mitochondrial oxidative stress in response to preeclampsia: a role for angiotension II type 1 autoantibodies. American Journal of Obstetrics & Gynecology MFM, 2021, 3, 100275.	2.6	10
35	<i>NAMPT</i> single-nucleotide polymorphism rs1319501 and visfatin/NAMPT affect nitric oxideÂformation, sFlt-1 and antihypertensive therapy response in preeclampsia. Pharmacogenomics, 2021, 22, 451-464.	1.3	7
36	Progesterone Induced Blocking Factor Reduces Hypertension and Placental Mitochondrial Dysfunction in Response to sFlt-1 during Pregnancy. Cells, 2021, 10, 2817.	4.1	7

LORENA M AMARAL

#	Article	IF	CITATIONS
37	17-Hydroxyprogesterone caproate improves hypertension and renal endothelin-1 in response to sFlt-1 induced hypertension in pregnant rats. Pregnancy Hypertension, 2020, 22, 151-155.	1.4	6
38	Investigation of interleukin-2-mediated changes in blood pressure, fetal growth restriction, and innate immune activation in normal pregnant rats and in a preclinical rat model of preeclampsia. Biology of Sex Differences, 2021, 12, 4.	4.1	6
39	Placental CD4+ T cells from preeclamptic patients cause autoantibodies to the angiotensin II type I receptor and hypertension in a pregnant rat model of preeclampsia. Exploration of Medicine, 0, , 99-111.	1.5	6
40	Selective inhibition of 20-hydroxyeicosatetraenoic acid lowers blood pressure in a rat model of preeclampsia. Prostaglandins and Other Lipid Mediators, 2018, 134, 108-113.	1.9	5
41	Low Dose of IL-2 Normalizes Hypertension and Mitochondrial Function in the RUPP Rat Model of Placental Ischemia. Cells, 2021, 10, 2797.	4.1	4
42	The Role of Interleukinâ€2 (ILâ€2) in Natural Killer Cell (NK) Activation and Hypertension in a Preclinical Rat Model of Preeclampsia. FASEB Journal, 2018, 32, 911.1.	0.5	1
43	The Role of B Cells in Mediating Hypertension in Preeclampsia or COVIDâ€19 Infection During Pregnancy. FASEB Journal, 2022, 36, .	0.5	1
44	B Cell Depletion During Pregnancy Improves Hypertension, Natural Killer Cell Activation, and May Not Worsen Fetal Outcomes in Response to Placental Ischemia. FASEB Journal, 2021, 35, .	0.5	0
45	ILâ€17 causes hypertension and multiâ€organ tissue dysfunction which is attenuated with blockade of agonistic autoantibodies to the angiotensin II type I (AT1â€AA) receptor during pregnancy. FASEB Journal, 2021, 35, .	0.5	Ο
46	Progesterone and PIBF: new insights into treatment options for preeclampsia. FASEB Journal, 2021, 35, .	0.5	0
47	The Importance of B Cells in Causing Hypertension During Pregnancy; to B or Not to B. FASEB Journal, 2021, 35, .	0.5	Ο
48	T Cellâ€Dependent B Cell Activation Mediates Pathophysiology in Reponse to CD4 + T Cells from Reduced Uterine Perfusion Pregnant Rats. FASEB Journal, 2015, 29, 810.4.	0.5	0
49	Agonistic Autoantibodies to the Angiotensin II Type 1 Receptor Enhance ANGII Binding on Vascular Endothelial Cells. FASEB Journal, 2015, 29, 810.12.	0.5	Ο
50	Early Administration of 17â€Hydroxyprogesterone Caproate to Reduced Uterine Perfusion Pressure (RUPP) Rat Model of Preeclampsia Improves Inflammation, Uterine artery Vasoconstriction and Blood Pressure During Pregnancy. FASEB Journal, 2015, 29, 810.6.	0.5	0
51	Serelaxin Improves Blood Pressure and Uterine Artery Resistance in the Reduced Uterine Perfusion Pressure (RUPP) Rat Model of Preeclampsia. FASEB Journal, 2015, 29, 810.8.	0.5	Ο
52	Placental Ischemiaâ€Induced T H 17 Cells Mediate the Pathophysiology Associated with Preeclampsia. FASEB Journal, 2015, 29, 667.6.	0.5	0
53	Role of Cerebral Vascular Dysfunction on Alzheimer‣ike Cognitive Deficits in Diabetic T2DN rats. FASEB Journal, 2018, 32, .	0.5	0
54	Progesterone induced blocking factor improves fetal growth restriction possibly by reducing inflammation and placental cytolytic NK cells in response to placental ischemia during pregnancy. FASEB Journal, 2018, 32, 729.5.	0.5	0

LORENA M AMARAL

#	Article	IF	CITATIONS
55	Interleukinâ \in 4 supplementation improves the proinflammatory cell ratios, autoantibodies and blood pressure in response to placental ischemia. FASEB Journal, 2019, 33, 865.18.	0.5	0
56	Placental Ischemia Stimulated Natural Killer Cells Play a Direct Role in Causing Hypertension and Intrauterine Growth Restriction in Pregnant Rats. FASEB Journal, 2020, 34, 1-1.	0.5	0
57	CD4+ T Cells from RUPP rat model activate NK cells and cause mitochondrial oxidative stress and hypertension in normal pregnant rats. FASEB Journal, 2020, 34, 1-1.	0.5	Ο
58	Prevention of T Cell Activation in Response to Placental Ischemia Improves Hypertension and Natural Killer Cell Number During Pregnancy. FASEB Journal, 2020, 34, 1-1.	0.5	0
59	Progesterone induced blocking factor improves blood pressure, mitochondrial dysfunction and reactive oxygen species in response to sFltâ€1 induced hypertension during pregnancy. FASEB Journal, 2020, 34, 1-1.	0.5	Ο
60	Maternal B Cell Depletion Reduces Blood Pressure and Improves Fetal Weights in Male Offspring of a Rat Model of Preeclampsia. FASEB Journal, 2022, 36, .	0.5	0
61	CD4+T Cells cause increased glucose, mitochondrial dysfunction, and hypertension in a Novel Pregnant Rodent Model of Gestational Diabetes Mellitus. FASEB Journal, 2022, 36, .	0.5	0
62	Progesterone prolongs time to delivery and attenuates blood pressure possibly by improving inflammation and endothelial function in response to preeclampsia. FASEB Journal, 2022, 36, .	0.5	0