
Brian W Ogilvie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1236130/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GLUCURONIDATION CONVERTS GEMFIBROZIL TO A POTENT, METABOLISM-DEPENDENT INHIBITOR OF CYP2C8: IMPLICATIONS FOR DRUG-DRUG INTERACTIONS. Drug Metabolism and Disposition, 2006, 34, 191-197.	1.7	306
2	Evaluation of Ketoconazole and Its Alternative Clinical CYP3A4/5 Inhibitors as Inhibitors of Drug Transporters: The In Vitro Effects of Ketoconazole, Ritonavir, Clarithromycin, and Itraconazole on 13 Clinically-Relevant Drug Transporters. Drug Metabolism and Disposition, 2016, 44, 453-459.	1.7	101
3	The Proton Pump Inhibitor, Omeprazole, but Not Lansoprazole or Pantoprazole, Is a Metabolism-Dependent Inhibitor of CYP2C19: Implications for Coadministration with Clopidogrel. Drug Metabolism and Disposition, 2011, 39, 2020-2033.	1.7	90
4	Prediction of the Overall Renal Tubular Secretion and Hepatic Clearance of Anionic Drugs and a Renal Drug-Drug Interaction Involving Organic Anion Transporter 3 in Humans by In Vitro Uptake Experiments. Drug Metabolism and Disposition, 2011, 39, 1031-1038.	1.7	87
5	System-Dependent Outcomes during the Evaluation of Drug Candidates as Inhibitors of Cytochrome P450 (CYP) and Uridine Diphosphate Glucuronosyltransferase (UGT) Enzymes: Human Hepatocytes versus Liver Microsomes versus Recombinant Enzymes. Drug Metabolism and Pharmacokinetics, 2010, 25, 16-27.	1.1	68
6	An Evaluation of the Dilution Method for Identifying Metabolism-Dependent Inhibitors of Cytochrome P450 Enzymes. Drug Metabolism and Disposition, 2011, 39, 1370-1387.	1.7	60
7	In Vitro Inhibition and Induction of Human Liver Cytochrome P450 Enzymes by Milnacipran. Drug Metabolism and Disposition, 2009, 37, 2045-2054.	1.7	58
8	The Reliability of Estimating <i>K</i> _i Values for Direct, Reversible Inhibition of Cytochrome P450 Enzymes from Corresponding IC ₅₀ Values: A Retrospective Analysis of 343 Experiments. Drug Metabolism and Disposition, 2015, 43, 1744-1750.	1.7	40
9	Distribution, metabolism, and excretion of the anti-angiogenic compound SU5416. Toxicology in Vitro, 2006, 20, 154-162.	1.1	37
10	Construction of Triple-Transfected Cells [Organic Anion-Transporting Polypeptide (OATP) 1B1/Multidrug Resistance-Associated Protein (MRP) 2/MRP3 and OATP1B1/MRP2/MRP4] for Analysis of the Sinusoidal Function of MRP3 and MRP4. Drug Metabolism and Disposition, 2009, 37, 2103-2111.	1.7	35
11	An Assessment of the In Vitro Inhibition of Cytochrome P450 Enzymes, UDP-Glucuronosyltransferases, and Transporters by Phosphodiester- or Phosphorothioate-Linked Oligonucleotides. Drug Metabolism and Disposition, 2018, 46, 1066-1074.	1.7	18
12	An in Vitro Evaluation of the Victim and Perpetrator Potential of the Anticancer Agent Laromustine (VNP40101M), Based on Reaction Phenotyping and Inhibition and Induction of Cytochrome P450 Enzymes. Drug Metabolism and Disposition, 2009, 37, 1922-1930.	1.7	17
13	On the Mechanism of Hepatocarcinogenesis of Benzodiazepines: Evidence that Diazepam and Oxazepam are CYP2B Inducers in Rats, and both CYP2B and CYP4A Inducers in Mice. Drug Metabolism Reviews, 2006, 38, 235-259.	1.5	16
14	Clinical assessment of drug–drug interactions of tasimelteon, a novel dual melatonin receptor agonist. Journal of Clinical Pharmacology, 2015, 55, 1004-1011.	1.0	15
15	In vitro evaluation of fenfluramine and norfenfluramine as victims of drug interactions. Pharmacology Research and Perspectives, 2022, 10, .	1.1	9
16	In vitro evaluation suggests fenfluramine and norfenfluramine are unlikely to act as perpetrators of drug interactions. Pharmacology Research and Perspectives, 2022, 10, .	1.1	8
17	Use of Enzyme Inhibitors to Evaluate the Conversion Pathways of Ester and Amide Prodrugs: A Case Study Example with the Prodrug Ceftobiprole Medocaril. Journal of Pharmaceutical Sciences, 2012, 101, 1242-1252.	1.6	6
18	Effects of monocyte chemoattractant proteinâ€1, macrophage inflammatory proteinâ€1α, and interferonâ€Î±2a on P450 enzymes in human hepatocytes in vitro. Pharmacology Research and Perspectives, 2019, 7, e00551.	1.1	4