
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1236014/publications.pdf Version: 2024-02-01

KAI-LIE CHEN

#	Article	IF	CITATIONS
1	In-situ formed hierarchical transition metal oxide nanoarrays with rich antisite defects and oxygen vacancies for high-rate energy storage devices. Chinese Chemical Letters, 2022, 33, 2669-2676.	4.8	11
2	A <scp>Twoâ€Dimensional</scp> Semiconductive <scp>Metalâ€Organic</scp> Framework for Highly Efficient Microwave Absorption. Chinese Journal of Chemistry, 2022, 40, 467-474.	2.6	23
3	Synergetic Dielectric and Magnetic Losses of a Core–Shell Co/MnO/C Nanocomplex toward Highly Efficient Microwave Absorption. Inorganic Chemistry, 2022, 61, 1787-1796.	1.9	31
4	General pore features for one-step C ₂ H ₄ production from a C2 hydrocarbon mixture. Chemical Communications, 2022, 58, 4954-4957.	2.2	8
5	A (3,8)-Connected Metal–Organic Framework with Bending Dicarboxylate Linkers for C ₂ H ₂ /CO ₂ Separation. Inorganic Chemistry, 2022, 61, 4555-4560.	1.9	13
6	Carbon Catalysts for Electrochemical CO ₂ Reduction toward Multicarbon Products. Advanced Energy Materials, 2022, 12, .	10.2	50
7	Band Gap Modulation Enabled by TCNQ Loading in a Ru-Based Metal–Organic Framework for Enhanced Near-Infrared Absorption and Photothermal Conversion. Crystal Growth and Design, 2021, 21, 729-734.	1.4	8
8	Optimization of metal–organic framework derived transition metal hydroxide hierarchical arrays for high performance hybrid supercapacitors and alkaline Zn-ion batteries. Inorganic Chemistry Frontiers, 2021, 8, 3325-3335.	3.0	27
9	Molecular Sieving of Acetylene from Ethylene in a Rigid Ultraâ€microporous Metal Organic Framework Chemistry - A European Journal, 2021, 27, 9446-9453.	1.7	20
10	Low oncentration C ₂ H ₆ Capture Enabled by Size Matching in the Ultramicropore. Chemistry - A European Journal, 2021, 27, 12753-12757.	1.7	4
11	Mechanochemical synthesis of three-component metal-organic frameworks for large scale production. Journal of Solid State Chemistry, 2021, 303, 122547.	1.4	12
12	Pore Engineering for One-Step Ethylene Purification from a Three-Component Hydrocarbon Mixture. Journal of the American Chemical Society, 2021, 143, 1485-1492.	6.6	143
13	One-step ethylene production from a four-component gas mixture by a single physisorbent. Nature Communications, 2021, 12, 6507.	5.8	64
14	Tuning the Selectivity between C2H2 and CO2 in Molecular Porous Materials. Langmuir, 2021, 37, 13838-13845.	1.6	9
15	Electrochemically induced surface reconstruction of Niâ€Co oxide nanosheet arrays for hybrid supercapacitors. Exploration, 2021, 1, .	5.4	49
16	Highly effective electromagnetic wave absorbing Prismatic Co/C nanocomposites derived from cubic metal-organic framework. Composites Part B: Engineering, 2020, 182, 107613.	5.9	80
17	Tunable Electromagnetic Wave Absorption of Supramolecular Isomerâ€Derived Nanocomposites with Different Morphology. Advanced Materials Interfaces, 2020, 7, 1901820.	1.9	65
18	Enhancing cycling stability of transition metal-based layered double hydroxides through a self-sacrificial strategy for hybrid supercapacitors. Electrochimica Acta, 2020, 334, 135586.	2.6	39

#	Article	lF	CITATIONS
19	Crystal engineering of porous coordination networks to enable separation of C2 hydrocarbons. Chemical Communications, 2020, 56, 10419-10441.	2.2	123
20	Water-assisted one-pot synthesis of N-doped carbon supported Ru catalysts for heterogeneous catalysis. Chemical Communications, 2020, 56, 11311-11314.	2.2	9
21	Effect of Pore Size on the Separation of Ethylene from Ethane in Three Isostructural Metal Azolate Frameworks. Inorganic Chemistry, 2020, 59, 13019-13023.	1.9	6
22	Bimetallic MOF-derived hollow ZnNiC nano-boxes for efficient microwave absorption. Nanoscale, 2020, 12, 13311-13315.	2.8	75
23	Highly efficient and broad electromagnetic wave absorbers tuned via topology-controllable metal-organic frameworks. Science China Materials, 2020, 63, 2050-2061.	3.5	45
24	Emerging Perovskite Electromagnetic Wave Absorbers from Bi-Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 4818-4826.	1.4	21
25	Metal-organic framework derived directional growth of ultrathin amorphous NiCo hydroxide nanosheets on NiCo2O4 nanowire arrays for enhanced electrochemical properties. Ceramics International, 2020, 46, 22934-22943.	2.3	29
26	A supermolecular building block approach for construction of chiral metal–organic frameworks. Chemical Communications, 2019, 55, 8639-8642.	2.2	11
27	Biowaste-Derived Bimetallic Ru–MoO _{<i>x</i>} Catalyst for the Direct Hydrogenation of Furfural to Tetrahydrofurfuryl Alcohol. ACS Sustainable Chemistry and Engineering, 2019, 7, 12858-12866.	3.2	48
28	Lewis versus BrÃ,nsted Acid Activation of a Mn(IV) Catalyst for Alkene Oxidation. Inorganic Chemistry, 2019, 58, 14924-14930.	1.9	20
29	Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. Science, 2019, 366, 241-246.	6.0	360
30	Poly(dimethylsilylene)diacetylene-Guided ZIF-Based Heterostructures for Full Ku-Band Electromagnetic Wave Absorption. ACS Applied Materials & Interfaces, 2019, 11, 17706-17713.	4.0	94
31	Co/C Composite Derived from a Newly Constructed Metal–Organic Framework for Effective Microwave Absorption. Crystal Growth and Design, 2019, 19, 1518-1524.	1.4	73
32	Highly selective CO ₂ removal for one-step liquefied natural gas processing by physisorbents. Chemical Communications, 2019, 55, 3219-3222.	2.2	31
33	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie - International Edition, 2018, 57, 5684-5689.	7.2	161
34	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie, 2018, 130, 5786-5791.	1.6	27
35	Efficient CO ₂ Removal for Ultra â€ Pure CO Production by Two Hybrid Ultramicroporous Materials. Angewandte Chemie - International Edition, 2018, 57, 3332-3336.	7.2	52
36	Efficient CO ₂ Removal for Ultra â€ Pure CO Production by Two Hybrid Ultramicroporous Materials. Angewandte Chemie, 2018, 130, 3390-3394.	1.6	12

#	Article	IF	CITATIONS
37	Impact of partial interpenetration in a hybrid ultramicroporous material on C ₂ H ₂ /C ₂ H ₄ separation performance. Chemical Communications, 2018, 54, 3488-3491.	2.2	38
38	Finding the Optimal Balance between the Pore Size and Pore Chemistry in Hybrid Ultramicroporous Materials for Trace Acetylene Capture. ACS Applied Nano Materials, 2018, 1, 6000-6004.	2.4	12
39	Coordination Network That Reversibly Switches between Two Nonporous Polymorphs and a High Surface Area Porous Phase. Journal of the American Chemical Society, 2018, 140, 15572-15576.	6.6	51
40	Recyclable switching between nonporous and porous phases of a square lattice (sql) topology coordination network. Chemical Communications, 2018, 54, 7042-7045.	2.2	37
41	Robust Ultramicroporous Metal–Organic Frameworks with Benchmark Affinity for Acetylene. Angewandte Chemie, 2018, 130, 11137-11141.	1.6	85
42	Robust Ultramicroporous Metal–Organic Frameworks with Benchmark Affinity for Acetylene. Angewandte Chemie - International Edition, 2018, 57, 10971-10975.	7.2	365
43	Highly Selective Separation of C ₂ H ₂ from CO ₂ by a New Dichromate-Based Hybrid Ultramicroporous Material. ACS Applied Materials & Interfaces, 2017, 9, 33395-33400.	4.0	116
44	Hybrid ultramicroporous materials (HUMs) with enhanced stability and trace carbon capture performance. Chemical Communications, 2017, 53, 5946-5949.	2.2	99
45	Flue-gas and direct-air capture of CO ₂ by porous metal–organic materials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160025.	1.6	80
46	Enhanced Stability toward Humidity in a Family of Hybrid Ultramicroporous Materials Incorporating Cr ₂ O ₇ ^{2–} Pillars. Crystal Growth and Design, 2017, 17, 1933-1937.	1.4	12
47	The effect of centred versus offset interpenetration on C ₂ H ₂ sorption in hybrid ultramicroporous materials. Chemical Communications, 2017, 53, 11592-11595.	2.2	40
48	Benchmark C2H2/CO2 and CO2/C2H2 Separation by Two Closely Related Hybrid Ultramicroporous Materials. CheM, 2016, 1, 753-765.	5.8	349
49	Towards an understanding of the propensity for crystalline hydrate formation by molecular compounds. IUCrJ, 2016, 3, 430-439.	1.0	49
50	Picking the Right Material for the Right Application. CheM, 2016, 1, 666-667.	5.8	3
51	Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science, 2016, 353, 141-144.	6.0	1,088
52	Crystal engineering of a family of hybrid ultramicroporous materials based upon interpenetration and dichromate linkers. Chemical Science, 2016, 7, 5470-5476.	3.7	66
53	Tuning Pore Size in Squareâ€Lattice Coordination Networks for Sizeâ€Selective Sieving of CO ₂ . Angewandte Chemie, 2016, 128, 10424-10428.	1.6	43
54	Tuning Pore Size in Squareâ€Lattice Coordination Networks for Sizeâ€Selective Sieving of CO ₂ . Angewandte Chemie - International Edition, 2016, 55, 10268-10272.	7.2	237

#	Article	IF	CITATIONS
55	Network diversity through two-step crystal engineering of a decorated 6-connected primary molecular building block. CrystEngComm, 2016, 18, 8578-8581.	1.3	14
56	Theoretical Investigations of CO ₂ and H ₂ Sorption in Robust Molecular Porous Materials. Langmuir, 2016, 32, 11492-11505.	1.6	17
57	A rare cationic building block that generates a new type of polyhedral network with "cross-linked― pto topology. Chemical Communications, 2016, 52, 4160-4162.	2.2	18
58	Direct Air Capture of CO ₂ by Physisorbent Materials. Angewandte Chemie - International Edition, 2015, 54, 14372-14377.	7.2	382
59	Double-walled pyr topology networks from a novel fluoride-bridged heptanuclear metal cluster. Chemical Science, 2015, 6, 4784-4789.	3.7	38
60	Novel mode of 2-fold interpenetration observed in a primitive cubic network of formula [Ni(1,2-bis(4-pyridyl)acetylene) ₂ (Cr ₂ O ₇)] _n . Chemical Communications, 2015, 51, 14832-14835.	2.2	47
61	A flexible, porous, cluster-based Zn-pyrazolate-dicarboxylate framework showing selective adsorption properties. New Journal of Chemistry, 2014, 38, 2002-2007.	1.4	7
62	New Zn-Aminotriazolate-Dicarboxylate Frameworks: Synthesis, Structures, and Adsorption Properties. Crystal Growth and Design, 2013, 13, 2118-2123.	1.4	76
63	Turning on the flexibility of isoreticular porous coordination frameworks for drastically tunable framework breathing and thermal expansion. Chemical Science, 2013, 4, 1539.	3.7	163