List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1235583/publications.pdf Version: 2024-02-01

PASOLIALE E EULVIO

#	Article	IF	CITATIONS
1	Carbon Materials for Chemical Capacitive Energy Storage. Advanced Materials, 2011, 23, 4828-4850.	11.1	2,593
2	Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene. ACS Nano, 2011, 5, 6069-6076.	7.3	792
3	Softâ€Templated Mesoporous Carbonâ€Carbon Nanotube Composites for High Performance Lithiumâ€ion Batteries. Advanced Materials, 2011, 23, 4661-4666.	11.1	352
4	Ordered Mesoporous Alumina-Supported Metal Oxides. Journal of the American Chemical Society, 2008, 130, 15210-15216.	6.6	346
5	Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids. Chemical Communications, 2010, 46, 4487.	2.2	295
6	Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon, 2013, 54, 58-67.	5.4	241
7	Seawater Uranium Sorbents: Preparation from a Mesoporous Copolymer Initiator by Atomâ€Transfer Radical Polymerization. Angewandte Chemie - International Edition, 2013, 52, 13458-13462.	7.2	222
8	Aqueous proton transfer across single-layer graphene. Nature Communications, 2015, 6, 6539.	5.8	214
9	Template-Free Synthesis of Hierarchical Porous Metal–Organic Frameworks. Journal of the American Chemical Society, 2013, 135, 9572-9575.	6.6	200
10	Graphene Nucleation Density on Copper: Fundamental Role of Background Pressure. Journal of Physical Chemistry C, 2013, 117, 18919-18926.	1.5	179
11	Solid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly through coordination cross-linking. Nature Communications, 2017, 8, 15020.	5.8	164
12	Carbon black reborn: Structure and chemistry for renewable energy harnessing. Carbon, 2020, 162, 604-649.	5.4	156
13	Nanoscale Perturbations of Room Temperature Ionic Liquid Structure at Charged and Uncharged Interfaces. ACS Nano, 2012, 6, 9818-9827.	7.3	151
14	New Class of Type III Porous Liquids: A Promising Platform for Rational Adjustment of Gas Sorption Behavior. ACS Applied Materials & Interfaces, 2018, 10, 32-36.	4.0	142
15	Tailoring properties of SBA-15 materials by controlling conditions of hydrothermal synthesis. Journal of Materials Chemistry, 2005, 15, 5049.	6.7	133
16	Electrical and thermal conductivity of low temperature CVD graphene: the effect of disorder. Nanotechnology, 2011, 22, 275716.	1.3	132
17	Nitrogen-enriched ordered mesoporous carbons through direct pyrolysis in ammonia with enhanced capacitive performance. Journal of Materials Chemistry A, 2013, 1, 7920.	5.2	120
18	Structural Origins of Potential Dependent Hysteresis at the Electrified Graphene/Ionic Liquid Interface. Journal of Physical Chemistry C, 2014, 118, 569-574.	1.5	111

#	Article	IF	CITATIONS
19	Low-Temperature Fluorination of Soft-Templated Mesoporous Carbons for a High-Power Lithium/Carbon Fluoride Battery. Chemistry of Materials, 2011, 23, 4420-4427.	3.2	102
20	Hierarchical Metal–Organic Framework Hybrids: Perturbation-Assisted Nanofusion Synthesis. Accounts of Chemical Research, 2015, 48, 3044-3052.	7.6	99
21	Boron and nitrogen-rich carbons from ionic liquid precursors with tailorable surface properties. Physical Chemistry Chemical Physics, 2011, 13, 13486.	1.3	98
22	"Brickâ€andâ€Mortar―Selfâ€Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites. Advanced Functional Materials, 2011, 21, 2208-2215.	7.8	98
23	Synthesis of Mesoporous Alumina from Boehmite in the Presence of Triblock Copolymer. ACS Applied Materials & Interfaces, 2010, 2, 588-593.	4.0	81
24	Fast diffusion in a room temperature ionic liquid confined in mesoporous carbon. Europhysics Letters, 2012, 97, 66004.	0.7	75
25	Mesoporous metal organic framework–boehmite and silica composites. Chemical Communications, 2010, 46, 6798.	2.2	74
26	Short-time synthesis of SBA-15 using various silica sources. Journal of Colloid and Interface Science, 2005, 287, 717-720.	5.0	70
27	Interfacial ionic â€~liquids': connecting static and dynamic structures. Journal of Physics Condensed Matter, 2015, 27, 032101.	0.7	67
28	Polypyrrole-Based Nitrogen-Doped Carbon Replicas of SBA-15 and SBA-16 Containing Magnetic Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 13126-13133.	1.5	66
29	Distinctive Nanoscale Organization of Dicationic versus Monocationic Ionic Liquids. Journal of Physical Chemistry C, 2013, 117, 18251-18257.	1.5	66
30	Acidâ€Functionalized Mesoporous Carbon: An Efficient Support for Ruthenium atalyzed γâ€Valerolactone Production. ChemSusChem, 2015, 8, 2520-2528.	3.6	58
31	Porous Liquids: The Next Frontier. CheM, 2020, 6, 3263-3287.	5.8	57
32	Densification of Ionic Liquid Molecules within a Hierarchical Nanoporous Carbon Structure Revealed by Small-Angle Scattering and Molecular Dynamics Simulation. Chemistry of Materials, 2014, 26, 1144-1153.	3.2	55
33	Ionic liquid derived carbons as highly efficient oxygen reduction catalysts: first elucidation of pore size distribution dependent kinetics. Chemical Communications, 2014, 50, 1469-1471.	2.2	49
34	Synthesis of Porous, Nitrogenâ€Doped Adsorption/Diffusion Carbonaceous Membranes for Efficient CO ₂ Separation. Macromolecular Rapid Communications, 2013, 34, 452-459.	2.0	46
35	Multi-wall carbon nanotube@zeolite imidazolate framework composite from a nanoscale zinc oxide precursor. Microporous and Mesoporous Materials, 2014, 198, 139-143.	2.2	46
36	Synthesis and Characterization of Thiazolium-Based Room Temperature Ionic Liquids for Gas Separations. Industrial & Engineering Chemistry Research, 2012, 51, 11530-11537.	1.8	44

#	Article	IF	CITATIONS
37	Polymer-coated nanoporous carbons for trace seawater uranium adsorption. Science China Chemistry, 2013, 56, 1510-1515.	4.2	44
38	Phosphorylated mesoporous carbon as effective catalyst for the selective fructose dehydration to HMF. Journal of Energy Chemistry, 2013, 22, 305-311.	7.1	44
39	Molecular Dynamics Simulation Study of the Capacitive Performance of a Binary Mixture of Ionic Liquids near an Onion-like Carbon Electrode. Journal of Physical Chemistry Letters, 2012, 3, 2465-2469.	2.1	42
40	An unusual slowdown of fast diffusion in a room temperature ionic liquid confined in mesoporous carbon. Europhysics Letters, 2013, 102, 16004.	0.7	40
41	Effect of cation on diffusion coefficient of ionic liquids at onion-like carbon electrodes. Journal of Physics Condensed Matter, 2014, 26, 284104.	0.7	40
42	Strainâ€Based In Situ Study of Anion and Cation Insertion into Porous Carbon Electrodes with Different Pore Sizes. Advanced Energy Materials, 2014, 4, 1300683.	10.2	39
43	"Brick-and-mortar―synthesis of free-standing mesoporous carbon nanocomposite membranes as supports of room temperature ionic liquids for CO2â^N2 separation. Journal of Membrane Science, 2014, 468, 73-80.	4.1	32
44	Hydrothermal Synthesis and Surface Characteristics of Novel Alpha Alumina Nanosheets with Controlled Chemical Composition. Chemistry of Materials, 2010, 22, 6564-6574.	3.2	31
45	A new family of fluidic precursors for the self-templated synthesis of hierarchical nanoporous carbons. Chemical Communications, 2013, 49, 7289.	2.2	29
46	Effect of alkyl and aryl substitutions on 1,2,4-triazolium-based ionic liquids for carbon dioxide separation and capture. RSC Advances, 2013, 3, 3981.	1.7	29
47	Free Energy Relationships in the Electrical Double Layer over Single-Layer Graphene. Journal of the American Chemical Society, 2013, 135, 979-981.	6.6	28
48	Phosphorylated mesoporous carbon as a solid acid catalyst. Physical Chemistry Chemical Physics, 2011, 13, 2492-2494.	1.3	26
49	Enhanced performance of dicationic ionic liquid electrolytes by organic solvents. Journal of Physics Condensed Matter, 2014, 26, 284105.	0.7	24
50	The influence of a hierarchical porous carbon network on the coherent dynamics of a nanoconfined room temperature ionic liquid: A neutron spin echo and atomistic simulation investigation. Carbon, 2014, 78, 415-427.	5.4	24
51	Fluorination of "brick and mortar―soft-templated graphitic ordered mesoporous carbons for high power lithium-ion battery. Journal of Materials Chemistry A, 2013, 1, 9414.	5.2	23
52	"One-pot―synthesis of phosphorylated mesoporous carbon heterogeneous catalysts with tailored surface acidity. Catalysis Today, 2012, 186, 12-19.	2.2	22
53	Towards the selective modification of soft-templated mesoporous carbon materials by elemental fluorine for energy storage devices. Journal of Materials Chemistry A, 2013, 1, 9327.	5.2	22
54	Mesoporous Carbon Materials with Ultra-Thin Pore Walls and Highly Dispersed Nickel Nanoparticles. European Journal of Inorganic Chemistry, 2009, 2009, 605-612.	1.0	21

#	Article	IF	CITATIONS
55	SBA-15-Supported Mixed-Metal Oxides: Partial Hydrolytic Solâ^'Gel Synthesis, Adsorption, and Structural Properties. ACS Applied Materials & amp; Interfaces, 2010, 2, 134-142.	4.0	21
56	Directed Synthesis of Nanoporous Carbons from Taskâ€Specific Ionic Liquid Precursors for the Adsorption of CO ₂ . ChemSusChem, 2014, 7, 3284-3289.	3.6	21
57	Interaction of Magnesium Ions with Pristine Single-Layer and Defected Graphene/Water Interfaces Studied by Second Harmonic Generation. Journal of Physical Chemistry B, 2014, 118, 7739-7749.	1.2	18
58	Magadiite templated high surface area graphene-type carbons from metal-halide based ionic liquids. Journal of Materials Chemistry A, 2013, 1, 59-62.	5.2	15
59	Standard nitrogen adsorption data for α-alumina and their use for characterization of mesoporous alumina-based materials. Adsorption, 2013, 19, 475-481.	1.4	13
60	Nanocasting Synthesis of Iron-Doped Mesoporous Alâ^'Ti Mixed Oxides Using Ordered Mesoporous Carbon Templates. Journal of Physical Chemistry C, 2009, 113, 13565-13573.	1.5	12
61	Examining the structure and intermolecular forces of thiazolium-based ionic liquids. Journal of Molecular Liquids, 2021, 327, 114800.	2.3	11
62	Oxidative synthesis of yellow photoluminescent carbon nanoribbons from carbon black. Carbon, 2021, 183, 495-503.	5.4	11
63	Effects of Hydrothermal Treatment and Template Removal on the Adsorption and Structural Properties of SBA-16 Mesoporous Silica. Adsorption Science and Technology, 2007, 25, 439-449.	1.5	9
64	Optimization of synthesis time for SBA-15 materials. Studies in Surface Science and Catalysis, 2005, 156, 75-82.	1.5	6
65	Glucose oxidation reaction at palladium-carbon nano-onions in alkaline media. Journal of Solid State Electrochemistry, 2021, 25, 207-217.	1.2	5
66	Reaction products between sodium diphenyl -amine-4-sulfonate and hydrated LaCl3. Journal of Thermal Analysis and Calorimetry, 2004, 75, 615-621.	2.0	4
67	Nanocrystalline Diamond. , 2013, , 267-294.		0

Templated and Ordered Mesoporous Carbons. , 2017, , 443-466.

0