Kenneth Walsh

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1235335/kenneth-walsh-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

46,370 104 321 210 h-index g-index citations papers 50,789 339 9.4 7.35 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
321	Space flight associated changes in astronauts[plasma-derived small extracellular vesicle microRNA: Biomarker identification. <i>Clinical and Translational Medicine</i> , 2022 , 12,	5.7	1
320	Emerging Role of Exosomal Long Non-coding RNAs in Spaceflight-Associated Risks in Astronauts <i>Frontiers in Genetics</i> , 2021 , 12, 812188	4.5	0
319	Cell-Free Mitochondrial DNA as a Potential Biomarker for Astronauts' Health. <i>Journal of the American Heart Association</i> , 2021 , 10, e022055	6	7
318	Perivascular Adipose Tissue Inflammation in Ischemic Heart Disease. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2021 , 41, 1239-1250	9.4	5
317	Importance of clonal hematopoiesis in heart failure. Trends in Cardiovascular Medicine, 2021,	6.9	1
316	Bone Marrow Transplantation Procedures in Mice to Study Clonal Hematopoiesis. <i>Journal of Visualized Experiments</i> , 2021 ,	1.6	2
315	Murine models of clonal hematopoiesis to assess mechanisms of cardiovascular disease. <i>Cardiovascular Research</i> , 2021 ,	9.9	1
314	TP53-mediated therapy-related clonal hematopoiesis contributes to doxorubicin-induced cardiomyopathy by augmenting a neutrophil-mediated cytotoxic response. <i>JCI Insight</i> , 2021 , 6,	9.9	6
313	Isolation of Highly Purified and Viable Retinal Endothelial Cells. <i>Journal of Vascular Research</i> , 2021 , 58, 49-57	1.9	2
312	The Cell Surface Receptors Ror1/2 Control Cardiac Myofibroblast Differentiation. <i>Journal of the American Heart Association</i> , 2021 , 10, e019904	6	2
311	The Cancer Therapy-Related Clonal Hematopoiesis Driver Gene Promotes Inflammation and Non-Ischemic Heart Failure in Mice. <i>Circulation Research</i> , 2021 , 129, 684-698	15.7	4
310	Hematopoietic JAK2-mediated clonal hematopoiesis: AIM2 understand mechanisms of atherogenesis 2021 , 1,		1
309	Nitroxide-enhanced MRI of cardiovascular oxidative stress. <i>NMR in Biomedicine</i> , 2020 , 33, e4359	4.4	2
308	Clonal Hematopoiesis: A[New[Step[Linking Inflammation to[Heart[Failure. <i>JACC Basic To Translational Science</i> , 2020 , 5, 196-207	8.7	12
307	Genetics of age-related clonal hematopoiesis and atherosclerotic cardiovascular disease. <i>Current Opinion in Cardiology</i> , 2020 , 35, 219-225	2.1	7
306	Tet2-mediated clonal hematopoiesis in nonconditioned mice accelerates age-associated cardiac dysfunction. <i>JCI Insight</i> , 2020 , 5,	9.9	43
305	Cardiovascular Disease, Aging, and Clonal Hematopoiesis. <i>Annual Review of Pathology: Mechanisms of Disease</i> , 2020 , 15, 419-438	34	39

Somatic mosaicism: implications for the cardiovascular system. European Heart Journal, 2020, 41, 2904-29@7 304 The role of clonal haematopoiesis in cardiovascular diseases: epidemiology and experimental 303 10.8 7 studies. Journal of Internal Medicine, 2020, 288, 507-517 TET2-Loss-of-Function-Driven Clonal Hematopoiesis Exacerbates Experimental Insulin Resistance in 302 10.6 35 Aging and Obesity. Cell Reports, 2020, 33, 108326 Lentiviral CRISPR/Cas9-Mediated Genome Editing for the Study of Hematopoietic Cells in Disease 301 1.6 6 Models. Journal of Visualized Experiments, 2019, Self-reactive CD4 IL-3 T cells amplify autoimmune inflammation in myocarditis by inciting monocyte 16.6 300 17 chemotaxis. Journal of Experimental Medicine, 2019, 216, 369-383 Wnt5a-Mediated Neutrophil Recruitment Has an Obligatory Role in Pressure Overload-Induced 28 16.7 299 Cardiac Dysfunction. Circulation, 2019, 140, 487-499 Endothelial Cells Regulate Physiological Cardiomyocyte Growth via VEGFR2-Mediated Paracrine 298 16.7 51 Signaling. Circulation, **2019**, 139, 2570-2584 -Mediated Clonal Hematopoiesis Accelerates Pathological Remodeling in Murine Heart[Failure. 297 8.7 45 JACC Basic To Translational Science, 2019, 4, 684-697 Tet2-Mediated Clonal Hematopoiesis Accelerates Heart Failure Through all Mechanism Involving the 296 15.1 252 IL-1[NLRP3[Inflammasome. Journal of the American College of Cardiology, 2018, 71, 875-886 Somatic Mutations and Clonal Hematopoiesis: Unexpected Potential New Drivers of Age-Related 295 15.7 72 Cardiovascular Disease. Circulation Research, 2018, 122, 523-532 Acute and Chronic Increases of Circulating FSTL1 Normalize Energy Substrate Metabolism in 294 7.6 19 Pacing-Induced Heart Failure. Circulation: Heart Failure, 2018, 11, e004486 CRISPR-Mediated Gene Editing to Assess the Roles of Tet2 and Dnmt3a in Clonal Hematopoiesis 138 293 15.7 and Cardiovascular Disease. Circulation Research, 2018, 123, 335-341 Relaxin Family Member Insulin-Like Peptide 6 Ameliorates Cardiac Fibrosis and Prevents Cardiac 6 292 11 Remodeling in Murine Heart Failure Models. Journal of the American Heart Association, 2018, 7, Somatic mutations that contribute to clonal hematopoiesis and cardiovascular disease risk: New mechanisms, new pharmacological targets. Proceedings for Annual Meeting of the Japanese 291 Pharmacological Society, 2018, WCP2018, SY4-1 Clonal Hematopoiesis and Its Impact on Cardiovascular Disease. Circulation Journal, 2018, 83, 2-11 290 2.9 25 Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in 289 602 33.3 mice. Science, 2017, 355, 842-847 RNA-seq and metabolomic analyses of Akt1-mediated muscle growth reveals regulation of 288 24 4.5 regenerative pathways and changes in the muscle secretome. BMC Genomics, 2017, 18, 181 Hematopoiesis Lineage Tree Uprooted: Every Cell Is a Rainbow. Developmental Cell, 2017, 41, 7-9 287

286	WNT5A regulates adipose tissue angiogenesis via antiangiogenic VEGF-Ab in obese humans. American Journal of Physiology - Heart and Circulatory Physiology, 2017 , 313, H200-H206	5.2	21
285	Different Sequences of Fractionated Low-Dose Proton and Single Iron-Radiation-Induced Divergent Biological Responses in the Heart. <i>Radiation Research</i> , 2017 , 188, 191-203	3.1	18
284	Genetic deficiency of Wnt5a diminishes disease severity in a murine model of rheumatoid arthritis. <i>Arthritis Research and Therapy</i> , 2017 , 19, 166	5.7	10
283	lncRNA Chronos is an aging-induced inhibitor of muscle hypertrophy. <i>Journal of Cell Biology</i> , 2017 , 216, 3497-3507	7.3	33
282	Activation of non-canonical WNT signaling in human visceral adipose tissue contributes to local and systemic inflammation. <i>Scientific Reports</i> , 2017 , 7, 17326	4.9	26
281	Humans and Mice Display Opposing Patterns of "Browning" Gene Expression in Visceral and Subcutaneous White Adipose Tissue Depots. <i>Frontiers in Cardiovascular Medicine</i> , 2017 , 4, 27	5.4	58
280	Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. <i>Circulation Research</i> , 2016 , 118, 1786-807	15.7	287
279	Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2016 , 36, 561-9	9.4	69
278	Secreted Frizzled-related Protein 5 Diminishes Cardiac Inflammation and Protects the Heart from Ischemia/Reperfusion Injury. <i>Journal of Biological Chemistry</i> , 2016 , 291, 2566-75	5.4	78
277	Genetic and Pharmacological Modulation of Akt1 for Improving Ovarian Graft Revascularization in a Mouse Model. <i>Biology of Reproduction</i> , 2016 , 94, 14	3.9	9
276	miR-410 and miR-495 Are Dynamically Regulated in Diverse Cardiomyopathies and Their Inhibition Attenuates Pathological Hypertrophy. <i>PLoS ONE</i> , 2016 , 11, e0151515	3.7	29
275	Application of ion-senstitive field effect transistors for measuring glial cell K+ transport 2016,		1
274	Follistatin-like 1 promotes cardiac fibroblast activation and protects the heart from rupture. <i>EMBO Molecular Medicine</i> , 2016 , 8, 949-66	12	62
273	WNT5A-JNK regulation of vascular insulin resistance in human obesity. <i>Vascular Medicine</i> , 2016 , 21, 489)- <u>4</u> 36	24
272	The Whitening of Brown Fat and Its Implications for Weight Management in Obesity. <i>Current Obesity Reports</i> , 2015 , 4, 224-9	8.4	58
271	C1q/Tumor Necrosis Factor-Related Protein 9 Protects against Acute Myocardial Injury through an Adiponectin Receptor I-AMPK-Dependent Mechanism. <i>Molecular and Cellular Biology</i> , 2015 , 35, 2173-85	5 ^{4.8}	68
270	C1q Deficiency Promotes Pulmonary Vascular Inflammation and Enhances the Susceptibility of the Lung Endothelium to Injury. <i>Journal of Biological Chemistry</i> , 2015 , 290, 29642-51	5.4	14
269	Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. <i>Nature</i> , 2015 , 525, 479-85	50.4	309

(2014-2015)

268	Functional implications of mitofusin 2-mediated mitochondrial-SR tethering. <i>Journal of Molecular and Cellular Cardiology</i> , 2015 , 78, 123-8	5.8	51
267	A pneumocyte-macrophage paracrine lipid axis drives the lung toward fibrosis. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2015 , 53, 74-86	5.7	70
266	Metabolomic analysis of akt1-mediated muscle hypertrophy in models of diet-induced obesity and age-related fat accumulation. <i>Journal of Proteome Research</i> , 2015 , 14, 342-52	5.6	12
265	Cardiac myocyte-derived follistatin-like 1 prevents renal injury in a subtotal nephrectomy model. <i>Journal of the American Society of Nephrology: JASN</i> , 2015 , 26, 636-46	12.7	38
264	Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion. <i>Diabetes</i> , 2015 , 64, 1235-48	0.9	90
263	Partial Liver Kinase B1 (LKB1) Deficiency Promotes Diastolic Dysfunction, De Novo Systolic Dysfunction, Apoptosis, and Mitochondrial Dysfunction With Dietary Metabolic Challenge. <i>Journal of the American Heart Association</i> , 2015 , 5,	6	4
262	Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury. <i>Scientific Reports</i> , 2015 , 5, 11362	4.9	57
261	An antiangiogenic isoform of VEGF-A contributes to impaired vascularization in peripheral artery disease. <i>Nature Medicine</i> , 2014 , 20, 1464-71	50.5	131
260	TNF-TNFR2/p75 signaling inhibits early and increases delayed nontargeted effects in bone marrow-derived endothelial progenitor cells. <i>Journal of Biological Chemistry</i> , 2014 , 289, 14178-93	5.4	9
259	Muscle-derived follistatin-like 1 functions to reduce neointimal formation after vascular injury. <i>Cardiovascular Research</i> , 2014 , 103, 111-20	9.9	50
258	Divergent roles for adiponectin receptor 1 (AdipoR1) and AdipoR2 in mediating revascularization and metabolic dysfunction in vivo. <i>Journal of Biological Chemistry</i> , 2014 , 289, 16200-13	5.4	24
257	The injury-induced myokine insulin-like 6 is protective in experimental autoimmune myositis. <i>Skeletal Muscle</i> , 2014 , 4, 16	5.1	8
256	Adiponectin attenuates abdominal aortic aneurysm formation in hyperlipidemic mice. <i>Atherosclerosis</i> , 2014 , 235, 339-46	3.1	12
255	Cardiovascular risks associated with low dose ionizing particle radiation. <i>PLoS ONE</i> , 2014 , 9, e110269	3.7	36
254	Glutaredoxin-1 up-regulation induces soluble vascular endothelial growth factor receptor 1, attenuating post-ischemia limb revascularization. <i>Journal of Biological Chemistry</i> , 2014 , 289, 8633-44	5.4	43
253	Akt1-mediated fast/glycolytic skeletal muscle growth attenuates renal damage in experimental kidney disease. <i>Journal of the American Society of Nephrology: JASN</i> , 2014 , 25, 2800-11	12.7	36
252	Adiponectin receptor signaling on dendritic cells blunts antitumor immunity. <i>Cancer Research</i> , 2014 , 74, 5711-22	10.1	33
251	The good, the bad, and the ugly of interleukin-6 signaling. <i>EMBO Journal</i> , 2014 , 33, 1425-7	13	69

250	Antiangiogenic actions of vascular endothelial growth factor-A165b, an inhibitory isoform of vascular endothelial growth factor-A, in human obesity. <i>Circulation</i> , 2014 , 130, 1072-80	16.7	51
249	Aberrant cell cycle reentry in human and experimental inclusion body myositis and polymyositis. <i>Human Molecular Genetics</i> , 2014 , 23, 3681-94	5.6	13
248	Glycolytic fast-twitch muscle fiber restoration counters adverse age-related changes in body composition and metabolism. <i>Aging Cell</i> , 2014 , 13, 80-91	9.9	53
247	Cardiometabolic effects of adiponectin. <i>Best Practice and Research in Clinical Endocrinology and Metabolism</i> , 2014 , 28, 81-91	6.5	38
246	Adipokines: a link between obesity and cardiovascular disease. <i>Journal of Cardiology</i> , 2014 , 63, 250-9	3	289
245	Lipidomic analysis of the liver identifies changes of major and minor lipid species in adiponectin deficient mice. <i>Experimental and Molecular Pathology</i> , 2013 , 94, 412-7	4.4	5
244	Androgen receptor promotes sex-independent angiogenesis in response to ischemia and is required for activation of vascular endothelial growth factor receptor signaling. <i>Circulation</i> , 2013 , 128, 60-71	16.7	42
243	T-cadherin is essential for adiponectin-mediated revascularization. <i>Journal of Biological Chemistry</i> , 2013 , 288, 24886-97	5.4	109
242	Cardiac PI3K-Akt impairs insulin-stimulated glucose uptake independent of mTORC1 and GLUT4 translocation. <i>Molecular Endocrinology</i> , 2013 , 27, 172-84		52
241	Assessment of cardiac proteome dynamics with heavy water: slower protein synthesis rates in interfibrillar than subsarcolemmal mitochondria. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2013 , 304, H1201-14	5.2	56
240	Retinoic acid receptor Istimulates hepatic induction of fibroblast growth factor 21 to promote fatty acid oxidation and control whole-body energy homeostasis in mice. <i>Journal of Biological Chemistry</i> , 2013 , 288, 10490-504	5.4	67
239	Adiponectin upregulates hepatocyte CMKLR1 which is reduced in human fatty liver. <i>Molecular and Cellular Endocrinology</i> , 2012 , 349, 248-54	4.4	45
238	Foxo/atrogin induction in human and experimental myositis. <i>Neurobiology of Disease</i> , 2012 , 46, 463-75	7.5	12
237	Cardiokines: recent progress in elucidating the cardiac secretome. <i>Circulation</i> , 2012 , 126, e327-32	16.7	83
236	Follistatin-like 3 mediates paracrine fibroblast activation by cardiomyocytes. <i>Journal of Cardiovascular Translational Research</i> , 2012 , 5, 814-26	3.3	28
235	Short-term akt activation in cardiac muscle cells improves contractile function in failing hearts. <i>American Journal of Pathology</i> , 2012 , 181, 1969-76	5.8	19
234	Adiponectin attenuates lipopolysaccharide-induced acute lung injury through suppression of endothelial cell activation. <i>Journal of Immunology</i> , 2012 , 188, 854-63	5.3	80
233	Mitofusins and the mitochondrial permeability transition: the potential downside of mitochondrial fusion. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2012 , 303, H243-55	5.2	44

(2011-2012)

232	Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2012 , 302, H167-79	5.2	138
231	The polyphenols resveratrol and S17834 prevent the structural and functional sequelae of diet-induced metabolic heart disease in mice. <i>Circulation</i> , 2012 , 125, 1757-64, S1-6	16.7	88
230	Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. <i>Circulation</i> , 2012 , 126, 1728-38	16.7	123
229	Airway delivery of soluble factors from plastic-adherent bone marrow cells prevents murine asthma. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2012 , 46, 207-16	5.7	58
228	Loss of mitofusin 2 promotes endoplasmic reticulum stress. <i>Journal of Biological Chemistry</i> , 2012 , 287, 20321-32	5.4	123
227	Akt1-mediated skeletal muscle growth attenuates cardiac dysfunction and remodeling after experimental myocardial infarction. <i>Circulation: Heart Failure</i> , 2012 , 5, 116-25	7.6	32
226	Identification of follistatin-like 1 by expression cloning as an activator of the growth differentiation factor 15 gene and a prognostic biomarker in acute coronary syndrome. <i>Clinical Chemistry</i> , 2012 , 58, 123	35:41	39
225	Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart. <i>Circulation Research</i> , 2012 , 111, 1012-26	15.7	160
224	Mitofusins are required for angiogenic function and modulate different signaling pathways in cultured endothelial cells. <i>Journal of Molecular and Cellular Cardiology</i> , 2011 , 51, 885-93	5.8	61
223	Adipokines in inflammation and metabolic disease. <i>Nature Reviews Immunology</i> , 2011 , 11, 85-97	36.5	2633
222	Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. <i>FASEB Journal</i> , 2011 , 25, 1664-79	0.9	229
221	Adipolin/C1qdc2/CTRP12 protein functions as an adipokine that improves glucose metabolism. <i>Journal of Biological Chemistry</i> , 2011 , 286, 34552-8	5.4	90
220	NADPH oxidase 4 promotes endothelial angiogenesis through endothelial nitric oxide synthase activation. <i>Circulation</i> , 2011 , 124, 731-40	16.7	209
219	Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. <i>Molecular and Cellular Biology</i> , 2011 , 31, 1309-28	4.8	252
218	Follistatin-like 1 in chronic systolic heart failure: a marker of left ventricular remodeling. <i>Circulation: Heart Failure</i> , 2011 , 4, 621-7	7.6	50
217	Cardiac myocyte-specific ablation of follistatin-like 3 attenuates stress-induced myocardial hypertrophy. <i>Journal of Biological Chemistry</i> , 2011 , 286, 9840-8	5.4	32
216	Myogenic Akt signaling attenuates muscular degeneration, promotes myofiber regeneration and improves muscle function in dystrophin-deficient mdx mice. <i>Human Molecular Genetics</i> , 2011 , 20, 1324-3	3 5 .6	40
215	Metabolic benefits of resistance training and fast glycolytic skeletal muscle. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2011 , 300, E3-10	6	79

214	Obesity and pulmonary arterial hypertension: Is adiponectin the molecular link between these conditions?. <i>Pulmonary Circulation</i> , 2011 , 1, 440-7	2.7	40
213	Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, E899-906	11.5	99
212	Increased Akt-mTOR signaling in lung epithelium is associated with respiratory distress syndrome in mice. <i>Molecular and Cellular Biology</i> , 2011 , 31, 1054-65	4.8	20
211	Adiponectin ameliorates doxorubicin-induced cardiotoxicity through Akt protein-dependent mechanism. <i>Journal of Biological Chemistry</i> , 2011 , 286, 32790-800	5.4	63
2 10	Angiotensin type I receptor blockade in conjunction with enhanced Akt activation restores coronary collateral growth in the metabolic syndrome. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2011 , 300, H1938-49	5.2	13
209	Adiponectin deficiency, diastolic dysfunction, and diastolic heart failure. <i>Endocrinology</i> , 2010 , 151, 322-	34 .8	65
208	Thiazolidinediones reduce pathological neovascularization in ischemic retina via an adiponectin-dependent mechanism. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2010 , 30, 46-53	9.4	41
207	Impact of a single intracoronary administration of adiponectin on myocardial ischemia/reperfusion injury in a pig model. <i>Circulation: Cardiovascular Interventions</i> , 2010 , 3, 166-73	6	71
206	DIP2A functions as a FSTL1 receptor. <i>Journal of Biological Chemistry</i> , 2010 , 285, 7127-34	5.4	87
205	What can adiponectin say about left ventricular function?. <i>Heart</i> , 2010 , 96, 331-2	5.1	13
204	Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. <i>Journal of Biological Chemistry</i> , 2010 , 285, 6153-60	5.4	405
203	Calorie restriction prevents hypertension and cardiac hypertrophy in the spontaneously hypertensive rat. <i>Hypertension</i> , 2010 , 56, 412-21	8.5	97
202	Insulin-like 6 is induced by muscle injury and functions as a regenerative factor. <i>Journal of Biological Chemistry</i> , 2010 , 285, 36060-9	5.4	33
201	Effects of adiponectin deficiency on structural and metabolic remodeling in mice subjected to pressure overload. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2010 , 298, H1639-4	45 ^{.2}	23
200	Modulation of angiotensin II-mediated cardiac remodeling by the MEF2A target gene Xirp2. <i>Circulation Research</i> , 2010 , 106, 952-60	15.7	44
199	LKB1 deficiency in Tie2-Cre-expressing cells impairs ischemia-induced angiogenesis. <i>Journal of Biological Chemistry</i> , 2010 , 285, 22291-8	5.4	35
198	Androgen receptor counteracts Doxorubicin-induced cardiotoxicity in male mice. <i>Molecular Endocrinology</i> , 2010 , 24, 1338-48		52
197	Adiponectin deficiency exacerbates cardiac dysfunction following pressure overload through disruption of an AMPK-dependent angiogenic response. <i>Journal of Molecular and Cellular Cardiology</i> , 2010 , 49, 210-20	5.8	91

(2009-2010)

196	Preserved heart function and maintained response to cardiac stresses in a genetic model of cardiomyocyte-targeted deficiency of cyclooxygenase-2. <i>Journal of Molecular and Cellular Cardiology</i> , 2010 , 49, 196-209	5.8	16
195	B Polyunsaturated fatty acids prevent pressure overload-induced ventricular dilation and decrease in mitochondrial enzymes despite no change in adiponectin. <i>Lipids in Health and Disease</i> , 2010 , 9, 95	4.4	16
194	Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. <i>Science</i> , 2010 , 329, 454-7	33.3	337
193	Myocardial expression of FOXO3a-Atrogin-1 pathway in human heart failure. <i>European Journal of Heart Failure</i> , 2010 , 12, 1290-6	12.3	30
192	Plasma adiponectin and mortality in critically ill subjects with acute respiratory failure. <i>Critical Care Medicine</i> , 2010 , 38, 2329-34	1.4	74
191	Insulin-stimulated phosphorylation of endothelial nitric oxide synthase at serine-615 contributes to nitric oxide synthesis. <i>Biochemical Journal</i> , 2010 , 426, 85-90	3.8	31
190	Determinants of adiponectin levels in patients with chronic systolic heart failure. <i>American Journal of Cardiology</i> , 2010 , 105, 1147-52	3	20
189	T-cadherin is critical for adiponectin-mediated cardioprotection in mice. <i>Journal of Clinical Investigation</i> , 2010 , 120, 4342-52	15.9	233
188	mTORC1 activation regulates beta-cell mass and proliferation by modulation of cyclin D2 synthesis and stability. <i>Journal of Biological Chemistry</i> , 2009 , 284, 7832-42	5.4	86
187	Activin A and follistatin-like 3 determine the susceptibility of heart to ischemic injury. <i>Circulation</i> , 2009 , 120, 1606-15	16.7	69
186	Cardiac-specific deletion of LKB1 leads to hypertrophy and dysfunction. <i>Journal of Biological Chemistry</i> , 2009 , 284, 35839-49	5.4	119
185	Caloric restriction stimulates revascularization in response to ischemia via adiponectin-mediated activation of endothelial nitric-oxide synthase. <i>Journal of Biological Chemistry</i> , 2009 , 284, 1718-24	5.4	104
184	Myogenic Akt signaling upregulates the utrophin-glycoprotein complex and promotes sarcolemma stability in muscular dystrophy. <i>Human Molecular Genetics</i> , 2009 , 18, 318-27	5.6	38
183	Adiponectin suppresses pathological microvessel formation in retina through modulation of tumor necrosis factor-alpha expression. <i>Circulation Research</i> , 2009 , 104, 1058-65	15.7	56
182	Obesity increases vascular senescence and susceptibility to ischemic injury through chronic activation of Akt and mTOR. <i>Science Signaling</i> , 2009 , 2, ra11	8.8	120
181	Adiponectin deficiency: a model of pulmonary hypertension associated with pulmonary vascular disease. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 2009 , 297, L432-8	5.8	88
180	The peroxisome proliferator-activated receptor gamma agonist rosiglitazone ameliorates murine lupus by induction of adiponectin. <i>Journal of Immunology</i> , 2009 , 182, 340-6	5.3	75
179	Adiponectin promotes revascularization of ischemic muscle through a cyclooxygenase 2-dependent mechanism. <i>Molecular and Cellular Biology</i> , 2009 , 29, 3487-99	4.8	77

178	Interaction of myocardial insulin receptor and IGF receptor signaling in exercise-induced cardiac hypertrophy. <i>Journal of Molecular and Cellular Cardiology</i> , 2009 , 47, 664-75	5.8	34
177	Adipokines, myokines and cardiovascular disease. <i>Circulation Journal</i> , 2009 , 73, 13-8	2.9	130
176	Ageing is associated with diminished apoptotic cell clearance in vivo. <i>Clinical and Experimental Immunology</i> , 2008 , 152, 448-55	6.2	97
175	Usefulness of adiponectin to predict myocardial salvage following successful reperfusion in patients with acute myocardial infarction. <i>American Journal of Cardiology</i> , 2008 , 101, 1712-5	3	51
174	Cyclooxygenase-2 induction by adiponectin is regulated by a sphingosine kinase-1 dependent mechanism in cardiac myocytes. <i>FEBS Letters</i> , 2008 , 582, 1147-50	3.8	46
173	Adiponectin promotes endothelial progenitor cell number and function. FEBS Letters, 2008, 582, 1607-	13 .8	72
172	FGF21 is an Akt-regulated myokine. FEBS Letters, 2008, 582, 3805-10	3.8	291
171	Fast/Glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. <i>Cell Metabolism</i> , 2008 , 7, 159-72	24.6	282
170	SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. Journal of Biological Chemistry, 2008 , 283, 20015-26	5.4	599
169	FOXO3a turns the tumor necrosis factor receptor signaling towards apoptosis through reciprocal regulation of c-Jun N-terminal kinase and NF-kappaB. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2008 , 28, 112-20	9.4	42
168	Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. <i>Journal of Biological Chemistry</i> , 2008 , 283, 32802-11	5.4	212
167	Forkhead factor, FOXO3a, induces apoptosis of endothelial cells through activation of matrix metalloproteinases. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2008 , 28, 302-8	9.4	36
166	Alveolar macrophage activation and an emphysema-like phenotype in adiponectin-deficient mice. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 2008 , 294, L1035-42	5.8	99
165	Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. <i>Circulation</i> , 2008 , 117, 3099-108	16.7	188
164	A novel role for adiponectin in the regulation of inflammation. <i>Arteriosclerosis, Thrombosis, and Vascular Biology,</i> 2008 , 28, 1219-21	9.4	59
163	Forkhead transcription factors and cardiovascular biology. Circulation Research, 2008, 102, 16-31	15.7	78
162	Angiogenic-regulatory network revealed by molecular profiling heart tissue following Akt1 induction in endothelial cells. <i>Angiogenesis</i> , 2008 , 11, 289-99	10.6	12
161	Forkhead Factor, FOXO3a, Induces Apoptosis of Endothelial Cells Through Activation of Matrix Metalloproteinases. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2008 , 28, 302-308	9.4	1

160	Adiponectin and cardiovascular inflammatory responses. <i>Current Atherosclerosis Reports</i> , 2007 , 9, 238-436		44
159	Endothelial Akt signaling is rate-limiting for rapamycin inhibition of mouse mammary tumor progression. <i>Cancer Research</i> , 2007 , 67, 5070-5	10.1	49
158	Adiponectin actions in the cardiovascular system. Cardiovascular Research, 2007, 74, 11-8	9.9	220
157	Adiponectin accumulates in myocardial tissue that has been damaged by ischemia-reperfusion injury via leakage from the vascular compartment. <i>Cardiovascular Research</i> , 2007 , 74, 471-9	9.9	74
156	Forkhead transcription factor FOXO3a is a negative regulator of angiogenic immediate early gene CYR61, leading to inhibition of vascular smooth muscle cell proliferation and neointimal hyperplasia. <i>Circulation Research</i> , 2007 , 100, 372-80	15.7	90
155	Evidence for adipose-muscle cross talk: opposing regulation of muscle proteolysis by adiponectin and Fatty acids. <i>Endocrinology</i> , 2007 , 148, 5696-705	4.8	80
154	Potential of adiponectin as a cardioprotective agent. Future Cardiology, 2007, 3, 647-56	1.3	7
153	Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies. <i>Journal of Clinical Investigation</i> , 2007 , 117, 375-86	15.9	272
152	Obligatory participation of macrophages in an angiopoietin 2-mediated cell death switch. <i>Development (Cambridge)</i> , 2007 , 134, 4449-58	6.6	82
151	Adiponectin protects against the development of systolic dysfunction following myocardial infarction. <i>Journal of Molecular and Cellular Cardiology</i> , 2007 , 42, 1065-74	5.8	192
150	Adiponectin as an anti-inflammatory factor. Clinica Chimica Acta, 2007, 380, 24-30	6.2	555
149	Cardioprotective Actions of Adiponectin. <i>High Blood Pressure and Cardiovascular Prevention</i> , 2007 , 14, 69-73	2.9	1
148	Cardiac growth and angiogenesis coordinated by intertissue interactions. <i>Journal of Clinical Investigation</i> , 2007 , 117, 3176-9	15.9	68
147	Contribution of Circulating Progenitor Cells to Vascular Repair and Lesion Formation 2007 , 185-197		
146	Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. <i>Cancer Cell</i> , 2006 , 10, 159-70	24.3	351
145	Cardioprotection by adiponectin. <i>Trends in Cardiovascular Medicine</i> , 2006 , 16, 141-6	6.9	180
144	Targeting adiponectin for cardioprotection. Expert Opinion on Therapeutic Targets, 2006, 10, 573-81	6.4	24
143	Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload. <i>Hypertension</i> , 2006 , 47, 887-93	8.5	260

142	The novel SPARC family member SMOC-2 potentiates angiogenic growth factor activity. <i>Journal of Biological Chemistry</i> , 2006 , 281, 22855-64	5.4	82
141	Adiponectin replenishment ameliorates obesity-related hypertension. <i>Hypertension</i> , 2006 , 47, 1108-16	8.5	342
140	Akt signaling and growth of the heart. Circulation, 2006, 113, 2032-4	16.7	74
139	Simvastatin treatment ameliorates autoimmune disease associated with accelerated atherosclerosis in a murine lupus model. <i>Journal of Immunology</i> , 2006 , 177, 3028-34	5.3	80
138	Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. <i>Genes and Development</i> , 2006 , 20, 3347-65	12.6	273
137	Impaired angiogenesis in glutathione peroxidase-1-deficient mice is associated with endothelial progenitor cell dysfunction. <i>Circulation Research</i> , 2006 , 98, 254-61	15.7	133
136	Microarray analysis of Akt1 activation in transgenic mouse hearts reveals transcript expression profiles associated with compensatory hypertrophy and failure. <i>Physiological Genomics</i> , 2006 , 27, 156-70	03.6	44
135	Decreased vascular lesion formation in mice with inducible endothelial-specific expression of protein kinase Akt. <i>Journal of Clinical Investigation</i> , 2006 , 116, 334-43	15.9	64
134	Akt3 overexpression in the heart results in progression from adaptive to maladaptive hypertrophy. Journal of Molecular and Cellular Cardiology, 2005 , 38, 375-85	5.8	71
133	Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. <i>Nature Medicine</i> , 2005 , 11, 1096-103	50.5	848
132	PKCalpha activates eNOS and increases arterial blood flow in vivo. Circulation Research, 2005, 97, 482-7	15.7	76
131	Microvascular patterning is controlled by fine-tuning the Akt signal. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 128-33	11.5	131
130	The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. Journal of Biological Chemistry, 2005 , 280, 20814-23	5.4	260
129	Intraneuronal beta-amyloid expression downregulates the Akt survival pathway and blunts the stress response. <i>Journal of Neuroscience</i> , 2005 , 25, 10960-9	6.6	100
128	AMP-activated protein kinase signaling stimulates VEGF expression and angiogenesis in skeletal muscle. <i>Circulation Research</i> , 2005 , 96, 838-46	15.7	198
127	Glycogen-Synthase Kinase3beta/beta-catenin axis promotes angiogenesis through activation of vascular endothelial growth factor signaling in endothelial cells. <i>Circulation Research</i> , 2005 , 96, 308-18	15.7	129
126	Akt/FOXO3a signaling modulates the endothelial stress response through regulation of heat shock protein 70 expression. <i>FASEB Journal</i> , 2005 , 19, 1042-4	0.9	54
125	Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. <i>Journal of Clinical Investigation</i> , 2005 , 115, 2108-18	15.9	709

(2003-2005)

124	Akt1/protein kinase Balpha is critical for ischemic and VEGF-mediated angiogenesis. <i>Journal of Clinical Investigation</i> , 2005 , 115, 2119-27	15.9	303
123	The pro- and antiangiogenic effects of statins. Seminars in Vascular Medicine, 2004, 4, 395-400		14
122	Vascular endothelial growth factor activates PI3K/Akt/forkhead signaling in endothelial cells. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2004 , 24, 294-300	9.4	181
121	Nuclear targeting of Akt enhances kinase activity and survival of cardiomyocytes. <i>Circulation Research</i> , 2004 , 94, 884-91	15.7	179
120	Celecoxib, a cyclooxygenase-2 inhibitor, reduces neointimal hyperplasia through inhibition of Akt signaling. <i>Circulation</i> , 2004 , 110, 301-8	16.7	8o
119	Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. <i>Journal of Biological Chemistry</i> , 2004 , 279, 1304-9	5.4	594
118	Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. <i>Circulation Research</i> , 2004 , 94, e27-31	15.7	510
117	Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of amp-activated protein kinase signaling. <i>Journal of Biological Chemistry</i> , 2004 , 279, 28670-4	5.4	261
116	The Akt-regulated forkhead transcription factor FOXO3a controls endothelial cell viability through modulation of the caspase-8 inhibitor FLIP. <i>Journal of Biological Chemistry</i> , 2004 , 279, 1513-25	5.4	215
115	Endothelial overexpression of Fas ligand decreases atherosclerosis in apolipoprotein E-deficient mice. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2004 , 24, 1466-73	9.4	18
114	Impaired clearance of apoptotic cells promotes synergy between atherogenesis and autoimmune disease. <i>Journal of Experimental Medicine</i> , 2004 , 199, 1121-31	16.6	143
113	Adiponectin-mediated modulation of hypertrophic signals in the heart. <i>Nature Medicine</i> , 2004 , 10, 1384	-9 0.5	568
112	Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. <i>Circulation Research</i> , 2004 , 94, 514-24	15.7	477
111	AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. <i>Journal of Biological Chemistry</i> , 2004 , 279, 47898-905	5.4	340
110	Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. <i>Cell</i> , 2004 , 117, 399-412	56.2	2133
109	Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart. <i>Journal of Biological Chemistry</i> , 2003 , 278, 39422-7	5.4	298
108	Akt signaling regulates side population cell phenotype via Bcrp1 translocation. <i>Journal of Biological Chemistry</i> , 2003 , 278, 39068-75	5.4	132
107	Obesity, adiponectin and vascular inflammatory disease. <i>Current Opinion in Lipidology</i> , 2003 , 14, 561-6	4.4	541

106	Statin therapy and angiogenesis. Current Opinion in Lipidology, 2003, 14, 599-603	4.4	66
105	AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. <i>Journal of Biological Chemistry</i> , 2003 , 278, 31000-6	5.4	279
104	Abeta42 generation is toxic to endothelial cells and inhibits eNOS function through an Akt/GSK-3beta signaling-dependent mechanism. <i>Neurobiology of Aging</i> , 2003 , 24, 437-51	5.6	60
103	Endothelial cell overexpression of fas ligand attenuates ischemia-reperfusion injury in the heart. Journal of Biological Chemistry, 2003 , 278, 15185-91	5.4	33
102	Phosphorylation of cardiac protein kinase B is regulated by palmitate. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2002 , 283, H1056-64	5.2	34
101	Regulation of angiogenesis by glycogen synthase kinase-3beta. <i>Journal of Biological Chemistry</i> , 2002 , 277, 41888-96	5.4	96
100	Suppression of Akt signaling induces Fas ligand expression: involvement of caspase and Jun kinase activation in Akt-mediated Fas ligand regulation. <i>Molecular and Cellular Biology</i> , 2002 , 22, 680-91	4.8	131
99	Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A. <i>Journal of Biological Chemistry</i> , 2002 , 277, 3388-	-9 ⁶⁴	350
98	Modulation by peroxynitrite of Akt- and AMP-activated kinase-dependent Ser1179 phosphorylation of endothelial nitric oxide synthase. <i>Journal of Biological Chemistry</i> , 2002 , 277, 32552-7	5.4	156
97	Angiopoietin-1 negatively regulates expression and activity of tissue factor in endothelial cells. <i>FASEB Journal</i> , 2002 , 16, 126-8	0.9	85
96	Akt signaling mediates postnatal heart growth in response to insulin and nutritional status. <i>Journal of Biological Chemistry</i> , 2002 , 277, 37670-7	5.4	163
95	Myogenic Akt signaling regulates blood vessel recruitment during myofiber growth. <i>Molecular and Cellular Biology</i> , 2002 , 22, 4803-14	4.8	138
94	Role of Akt signaling in vascular homeostasis and angiogenesis. <i>Circulation Research</i> , 2002 , 90, 1243-50	15.7	791
93	Elevated myocardial Akt signaling ameliorates doxorubicin-induced congestive heart failure and promotes heart growth. <i>Journal of Molecular and Cellular Cardiology</i> , 2002 , 34, 1241-7	5.8	70
92	Akt signaling mediates VEGF/VPF vascular permeability in vivo. FEBS Letters, 2002, 532, 67-9	3.8	51
91	Activation of Akt2 Inhibits anoikis and apoptosis induced by myogenic differentiation. <i>Cell Death and Differentiation</i> , 2001 , 8, 1207-12	12.7	32
90	Sphingosine 1-phosphate activates Akt, nitric oxide production, and chemotaxis through a Gi protein/phosphoinositide 3-kinase pathway in endothelial cells. <i>Journal of Biological Chemistry</i> , 2001 , 276, 19672-7	5.4	224
89	Glycoprotein 130 regulates cardiac myocyte survival in doxorubicin-induced apoptosis through phosphatidylinositol 3-kinase/Akt phosphorylation and Bcl-xL/caspase-3 interaction. <i>Circulation</i> , 2001 , 103, 555-61	16.7	187

(2000-2001)

88	Adrenomedullin induces endothelium-dependent vasorelaxation via the phosphatidylinositol 3-kinase/Akt-dependent pathway in rat aorta. <i>Circulation Research</i> , 2001 , 89, 63-70	15.7	145
87	Akt down-regulation of p38 signaling provides a novel mechanism of vascular endothelial growth factor-mediated cytoprotection in endothelial cells. <i>Journal of Biological Chemistry</i> , 2001 , 276, 30359-6	5 ^{5.4}	230
86	Activated Akt protects the lung from oxidant-induced injury and delays death of mice. <i>Journal of Experimental Medicine</i> , 2001 , 193, 545-49	16.6	82
85	Decorin-mediated signal transduction in endothelial cells. Involvement of Akt/protein kinase B in up-regulation of p21(WAF1/CIP1) but not p27(KIP1). <i>Journal of Biological Chemistry</i> , 2001 , 276, 40687-9	92 ^{5.4}	90
84	Phosphatidylinositol 3-kinase/Akt activity regulates c-FLIP expression in tumor cells. <i>Journal of Biological Chemistry</i> , 2001 , 276, 6893-6	5.4	214
83	Fas ligand overexpression on allograft endothelium inhibits inflammatory cell infiltration and transplant-associated intimal hyperplasia. <i>Journal of Immunology</i> , 2001 , 166, 6964-71	5.3	48
82	Phosphatidylinositol 3-kinase/Akt signaling controls endothelial cell sensitivity to Fas-mediated apoptosis via regulation of FLICE-inhibitory protein (FLIP). <i>Circulation Research</i> , 2001 , 89, 13-9	15.7	178
81	Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. <i>Journal of Molecular and Cellular Cardiology</i> , 2001 , 33, 907-21	5.8	749
80	Beta-amyloid peptide expression is sufficient for myotube death: implications for human inclusion body myopathy. <i>Molecular and Cellular Neurosciences</i> , 2001 , 17, 793-810	4.8	35
79	Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress. <i>Journal of Applied Physiology</i> , 2001 , 91, 1574-81	3.7	84
78	An inhibitory role of the phosphatidylinositol 3-kinase-signaling pathway in vascular endothelial growth factor-induced tissue factor expression. <i>Journal of Biological Chemistry</i> , 2001 , 276, 33428-34	5.4	87
77	HMG-CoA reductase inhibitor mobilizes bone marrowderived endothelial progenitor cells. <i>Journal of Clinical Investigation</i> , 2001 , 108, 399-405	15.9	151
76	HMG-CoA reductase inhibitor mobilizes bone marrowderived endothelial progenitor cells. <i>Journal of Clinical Investigation</i> , 2001 , 108, 399-405	15.9	532
75	The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. <i>Nature Medicine</i> , 2000 , 6, 1004-10	50.5	1230
74	Effect of percutaneous adenovirus-mediated Gax gene delivery to the arterial wall in double-injured atheromatous stented rabbit iliac arteries. <i>Gene Therapy</i> , 2000 , 7, 1353-61	4	41
73	Gene therapy for restenosis. <i>Current Cardiology Reports</i> , 2000 , 2, 13-23	4.2	4
72	Acute modulation of endothelial Akt/PKB activity alters nitric oxide-dependent vasomotor activity in vivo. <i>Journal of Clinical Investigation</i> , 2000 , 106, 493-9	15.9	162
71	Vascular endothelial growth factor-stimulated actin reorganization and migration of endothelial cells is regulated via the serine/threonine kinase Akt. <i>Circulation Research</i> , 2000 , 86, 892-6	15.7	346

70	Vascular endothelial cells and smooth muscle cells differ in expression of Fas and Fas ligand and in sensitivity to Fas ligand-induced cell death: implications for vascular disease and therapy. *Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 309-16	9.4	105
69	The role of homeobox genes in vascular remodeling and angiogenesis. <i>Circulation Research</i> , 2000 , 87, 865-72	15.7	77
68	Vascular cell apoptosis in remodeling, restenosis, and plaque rupture. <i>Circulation Research</i> , 2000 , 87, 184-8	15.7	163
67	Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. <i>Circulation</i> , 2000 , 101, 660-7	16.7	730
66	Regulation of cdk2 activity in endothelial cells that are inhibited from growth by cell contact. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2000 , 20, 629-35	9.4	38
65	Fas ligand-deficient mice display enhanced leukocyte infiltration and intima hyperplasia in flow-restricted vessels. <i>Journal of Molecular and Cellular Cardiology</i> , 2000 , 32, 1395-400	5.8	29
64	Intracoronary, adenovirus-mediated Akt gene transfer in heart limits infarct size following ischemia-reperfusion injury in vivo. <i>Journal of Molecular and Cellular Cardiology</i> , 2000 , 32, 2397-402	5.8	123
63	Expression of wild-type and noncleavable Fas ligand by tetracycline-regulated adenoviral vectors to limit intimal hyperplasia in vascular lesions. <i>Human Gene Therapy</i> , 2000 , 11, 1625-35	4.8	23
62	Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization. <i>Journal of Clinical Investigation</i> , 2000 , 106, 1011-20	15.9	56
61	Reversal of GATA-6 downregulation promotes smooth muscle differentiation and inhibits intimal hyperplasia in balloon-injured rat carotid artery. <i>Circulation Research</i> , 1999 , 84, 647-54	15.7	96
60	Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. <i>Journal of Biological Chemistry</i> , 1999 , 274, 16349-54	5.4	456
59	Adenovirus-mediated delivery of fas ligand inhibits intimal hyperplasia after balloon injury in immunologically primed animals. <i>Circulation</i> , 1999 , 99, 1776-9	16.7	69
58	Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. <i>Journal of Biological Chemistry</i> , 1999 , 274, 22699-704	5.4	452
57	Early cell loss after angioplasty results in a disproportionate decrease in percutaneous gene transfer to the vessel wall. <i>Human Gene Therapy</i> , 1999 , 10, 711-21	4.8	21
56	FLICE-inhibitory protein expression during macrophage differentiation confers resistance to fas-mediated apoptosis. <i>Journal of Experimental Medicine</i> , 1999 , 190, 1679-88	16.6	212
55	Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. <i>Nature</i> , 1999 , 399, 597-601	50.4	2190
54	Adenovirus-mediated delivery of the Gax transcription factor to rat carotid arteries inhibits smooth muscle proliferation and induces apoptosis. <i>Gene Therapy</i> , 1999 , 6, 758-63	4	43
53	Is extravasation a Fas-regulated process?. <i>Trends in Molecular Medicine</i> , 1999 , 5, 61-7		44

52	Negative regulation of inflammation by Fas ligand expression on the vascular endothelium. <i>Trends in Cardiovascular Medicine</i> , 1999 , 9, 34-41	6.9	24
51	A recombinant defective adenoviral agent expressing anti-bcl-2 ribozyme promotes apoptosis of bcl-2-expressing human prostate cancer cells. <i>International Journal of Cancer</i> , 1999 , 82, 846-52	7.5	33
50	Cyclosporine downregulates Fas ligand expression on vascular endothelial cells: implication for accelerated vasculopathy by immunosuppressive therapy. <i>Biochemical and Biophysical Research Communications</i> , 1999 , 263, 430-2	3.4	9
49	Cell cycle withdrawal promotes myogenic induction of Akt, a positive modulator of myocyte survival. <i>Molecular and Cellular Biology</i> , 1999 , 19, 5073-82	4.8	193
48	Regulation of smooth muscle cell migration and integrin expression by the Gax transcription factor. Journal of Clinical Investigation, 1999 , 104, 1469-80	15.9	67
47	Regulation of Inflammation by Fas Ligand Expression on the Vascular Endothelium 1999 , 125-141		
46	Regulation of Vascular Smooth Muscle Differentiation and Cell Cycle 1999 , 429-443		
45	A recombinant defective adenoviral agent expressing anti-bcl-2 ribozyme promotes apoptosis of bcl-2-expressing human prostate cancer cells 1999 , 82, 846		2
44	Bax-mediated cell death by the Gax homeoprotein requires mitogen activation but is independent of cell cycle activity. <i>EMBO Journal</i> , 1998 , 17, 3576-86	13	42
43	TNFalpha regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation. <i>Nature Medicine</i> , 1998 , 4, 415-20	50.5	196
42	Effects of poloxamer 407 on transfection time and percutaneous adenovirus-mediated gene transfer in native and stented vessels. <i>Human Gene Therapy</i> , 1998 , 9, 1013-24	4.8	23
41	Endothelial cell apoptosis induced by oxidized LDL is associated with the down-regulation of the cellular caspase inhibitor FLIP. <i>Journal of Biological Chemistry</i> , 1998 , 273, 33103-6	5.4	122
40	Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. <i>Circulation</i> , 1998 , 97, 1114-23	16.7	962
39	Nitric oxide-induced downregulation of Cdk2 activity and cyclin A gene transcription in vascular smooth muscle cells. <i>Circulation</i> , 1998 , 97, 2066-72	16.7	78
38	GATA-6 induces p21(Cip1) expression and G1 cell cycle arrest. <i>Journal of Biological Chemistry</i> , 1998 , 273, 13713-8	5.4	98
37	Fas ligand gene transfer to the vessel wall inhibits neointima formation and overrides the adenovirus-mediated T cell response. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 1213-7	11.5	130
36	Oxidized LDL activates fas-mediated endothelial cell apoptosis. <i>Journal of Clinical Investigation</i> , 1998 , 102, 1682-9	15.9	180
35	A competitive mechanism of CArG element regulation by YY1 and SRF: implications for assessment of Phox1/MHox transcription factor interactions at CArG elements. <i>DNA and Cell Biology</i> , 1997 , 16, 653	-61 ⁶	28

34	Percutaneous delivery of the gax gene inhibits vessel stenosis in a rabbit model of balloon angioplasty. <i>Cardiovascular Research</i> , 1997 , 35, 536-46	9.9	51
33	Inhibition of myogenesis by multiple cyclin-Cdk complexes. Coordinate regulation of myogenesis and cell cycle activity at the level of E2F. <i>Journal of Biological Chemistry</i> , 1997 , 272, 791-7	5.4	89
32	p21CIP1-mediated inhibition of cell proliferation by overexpression of the gax homeodomain gene. <i>Genes and Development</i> , 1997 , 11, 1674-89	12.6	143
31	Cell cycle exit upon myogenic differentiation. <i>Current Opinion in Genetics and Development</i> , 1997 , 7, 597	7- <u>6</u> 0 ₉ 2	270
30	Prospects for intravascular gene therapy. <i>Journal of Clinical Apheresis</i> , 1997 , 12, 140-5	3.2	2
29	Evidence for the rapid onset of apoptosis in medial smooth muscle cells after balloon injury. <i>Circulation</i> , 1997 , 95, 981-7	16.7	185
28	Adenoviral constructs encoding phosphorylation-competent full-length and truncated forms of the human retinoblastoma protein inhibit myocyte proliferation and neointima formation. <i>Circulation</i> , 1997 , 96, 1899-905	16.7	47
27	Embryonic expression of the Gax homeodomain protein in cardiac, smooth, and skeletal muscle. <i>Circulation Research</i> , 1997 , 80, 452-62	15.7	28
26	Coordinate regulation of cell cycle and apoptosis during myogenesis. <i>Progress in Cell Cycle Research</i> , 1997 , 3, 53-8		54
25	Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. <i>Lancet, The</i> , 1996 , 348, 370-4	40	834
2.4	Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. <i>Science</i> , 1996 ,		461
24	273, 359-61	33.3	401
23		33·3 7·3	494
	273, 359-61 Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally		·
23	273, 359-61 Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. <i>Journal of Cell Biology</i> , 1996 , 132, 657-66 Growth-arrest homeobox gene Gax: a molecular strategy to prevent arterial restenosis. <i>Swiss</i>	7.3	494
23	Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. <i>Journal of Cell Biology</i> , 1996 , 132, 657-66 Growth-arrest homeobox gene Gax: a molecular strategy to prevent arterial restenosis. <i>Swiss Medical Weekly</i> , 1996 , 126, 1721-6 Expression of gax, a growth arrest homeobox gene, is rapidly down-regulated in the rat carotid	7.3	494
23	Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. <i>Journal of Cell Biology</i> , 1996 , 132, 657-66 Growth-arrest homeobox gene Gax: a molecular strategy to prevent arterial restenosis. <i>Swiss Medical Weekly</i> , 1996 , 126, 1721-6 Expression of gax, a growth arrest homeobox gene, is rapidly down-regulated in the rat carotid artery during the proliferative response to balloon injury. <i>Journal of Biological Chemistry</i> , 1995 , 270, 545. Regulation of Gax homeobox gene transcription by a combination of positive factors including	7·3 3·1 5 7 - 6 1	494 5 67
23 22 21 20	Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. <i>Journal of Cell Biology</i> , 1996 , 132, 657-66 Growth-arrest homeobox gene Gax: a molecular strategy to prevent arterial restenosis. <i>Swiss Medical Weekly</i> , 1996 , 126, 1721-6 Expression of gax, a growth arrest homeobox gene, is rapidly down-regulated in the rat carotid artery during the proliferative response to balloon injury. <i>Journal of Biological Chemistry</i> , 1995 , 270, 54: Regulation of Gax homeobox gene transcription by a combination of positive factors including myocyte-specific enhancer factor 2. <i>Molecular and Cellular Biology</i> , 1995 , 15, 4272-81 Mitogen-responsive nuclear factors that mediate growth control signals in vascular myocytes.	7·3 3·1 5 7·4 61 4.8	49456734

LIST OF PUBLICATIONS

16	Molecular cloning and localization of the human GAX gene to 7p21. <i>Genomics</i> , 1994 , 24, 535-40	4.3	18
15	Cloning and sequence analysis of homeobox transcription factor cDNAs with an inosine-containing probe. <i>BioTechniques</i> , 1994 , 16, 856-8, 860-2, 865	2.5	9
14	Molecular cloning of a diverged homeobox gene that is rapidly down-regulated during the G0/G1 transition in vascular smooth muscle cells. <i>Molecular and Cellular Biology</i> , 1993 , 13, 3722-33	4.8	122
13	Different regulatory sequences control creatine kinase-M gene expression in directly injected skeletal and cardiac muscle. <i>Molecular and Cellular Biology</i> , 1993 , 13, 1264-72	4.8	86
12	Homeobox transcription factor regulation in the cardiovascular system. <i>Trends in Cardiovascular Medicine</i> , 1993 , 3, 184-90	6.9	25
11	Functional antagonism between YY1 and the serum response factor. <i>Molecular and Cellular Biology</i> , 1992 , 12, 4209-14	4.8	167
10	Adaptive and maladaptive behavior in Prader-Willi syndrome. <i>Journal of the American Academy of Child and Adolescent Psychiatry</i> , 1992 , 31, 1131-6	7.2	123
9	Profiles, correlates, and trajectories of intelligence in Prader-Willi syndrome. <i>Journal of the American Academy of Child and Adolescent Psychiatry</i> , 1992 , 31, 1125-30	7.2	122
8	Natural and synthetic DNA elements with the CArG motif differ in expression and protein-binding properties. <i>Molecular and Cellular Biology</i> , 1991 , 11, 6296-305	4.8	44
7	The myosin light chain enhancer and the skeletal actin promoter share a binding site for factors involved in muscle-specific gene expression. <i>Molecular and Cellular Biology</i> , 1991 , 11, 3735-44	4.8	47
6	Cross-binding of factors to functionally different promoter elements in c-fos and skeletal actin genes. <i>Molecular and Cellular Biology</i> , 1989 , 9, 2191-201	4.8	147
5	Cross-binding of factors to functionally different promoter elements in c-fos and skeletal actin genes. <i>Molecular and Cellular Biology</i> , 1989 , 9, 2191-2201	4.8	83
4	DNA-binding site for two skeletal actin promoter factors is important for expression in muscle cells. <i>Molecular and Cellular Biology</i> , 1988 , 8, 1800-2	4.8	79
3	DNA-binding site for two skeletal actin promoter factors is important for expression in muscle cells. <i>Molecular and Cellular Biology</i> , 1988 , 8, 1800-1802	4.8	50
2	Regulation of Angiogenesis and Vascular Remodeling by Endothelial Akt Signaling729-736		
1	Adipokines in inflammation and metabolic disease		1