
Johannes Karges

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/123527/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A ruthenium–oligonucleotide bioconjugated photosensitizing aptamer for cancer cell specific photodynamic therapy. RSC Chemical Biology, 2022, 3, 85-95.	2.0	14
2	Clinical Development of Metal Complexes as Photosensitizers for Photodynamic Therapy of Cancer. Angewandte Chemie - International Edition, 2022, 61, .	7.2	170
3	Engineered exosomes as a natural nanoplatform for cancer targeted delivery of metal-based drugs. Coordination Chemistry Reviews, 2022, 454, 214325.	9.5	9
4	Salicylate metal-binding isosteres as fragments for metalloenzyme inhibition. Chemical Science, 2022, 13, 2128-2136.	3.7	6
5	Chiral rhodium(<scp>iii</scp>)–azobenzene complexes as photoswitchable DNA molecular locks. Chemical Communications, 2022, 58, 4324-4327.	2.2	7
6	Photodecaging of a Mitochondria-Localized Iridium(III) Endoperoxide Complex for Two-Photon Photoactivated Therapy under Hypoxia. Journal of the American Chemical Society, 2022, 144, 4091-4101.	6.6	93
7	Computational Prediction of the Binding Pose of Metal-Binding Pharmacophores. ACS Medicinal Chemistry Letters, 2022, 13, 428-435.	1.3	3
8	Photoâ€Reduction with NIR Light of Nucleusâ€Targeting Pt ^{IV} Nanoparticles for Combined Tumorâ€Targeted Chemotherapy and Photodynamic Immunotherapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	93
9	Preorganized Homochiral Pyrroleâ€Based Receptors that Display Enantioselective Anion Binding. European Journal of Organic Chemistry, 2022, 2022, .	1.2	2
10	Combination of chemistry and material science to overcome health problems. Biosafety and Health, 2022, 4, 64-65.	1.2	13
11	A mitochondria-localized iridium(<scp>iii</scp>)–chlorin E6 conjugate for synergistic sonodynamic and two-photon photodynamic therapy against melanoma. Inorganic Chemistry Frontiers, 2022, 9, 3034-3046.	3.0	7
12	A Biodegradable Iridium(III) Coordination Polymer for Enhanced Twoâ€Photon Photodynamic Therapy Using an Apoptosis–Ferroptosis Hybrid Pathway. Angewandte Chemie, 2022, 134, .	1.6	9
13	A Biodegradable Iridium(III) Coordination Polymer for Enhanced Twoâ€Photon Photodynamic Therapy Using an Apoptosis–Ferroptosis Hybrid Pathway. Angewandte Chemie - International Edition, 2022, 61, .	7.2	64
14	A mitochondria-localized oxygen self-sufficient two-photon nano-photosensitizer for ferroptosis-boosted photodynamic therapy under hypoxia. Nano Today, 2022, 44, 101509.	6.2	33
15	A pH-responsive iridium(<scp>iii</scp>) two-photon photosensitizer loaded CaCO ₃ nanoplatform for combined Ca ²⁺ overload and photodynamic therapy. Inorganic Chemistry Frontiers, 2022, 9, 4171-4183.	3.0	9
16	One―and Twoâ€Photon Phototherapeutic Effects of Ru ^{II} Polypyridine Complexes in the Hypoxic Centre of Large Multicellular Tumor Spheroids and Tumorâ€Bearing Mice**. Chemistry - A European Journal, 2021, 27, 362-370.	1.7	37
17	Highly cytotoxic copper(II) terpyridine complexes as anticancer drug candidates. Inorganica Chimica Acta, 2021, 516, 120137.	1.2	27
18	Physical, spectroscopic, and biological properties of ruthenium and osmium photosensitizers bearing diversely substituted 4,4′-di(styryl)-2,2′-bipyridine ligands. Dalton Transactions, 2021, 50, 14629-14639.	1.6	12

JOHANNES KARGES

#	Article	IF	CITATIONS
19	Photorelease of a metal-binding pharmacophore from a Ru(<scp>ii</scp>) polypyridine complex. Dalton Transactions, 2021, 50, 2757-2765.	1.6	10
20	Re ^I Tricarbonyl Complexes as Coordinate Covalent Inhibitors for the SARS oVâ€2 Main Cysteine Protease. Angewandte Chemie, 2021, 133, 10811-10818.	1.6	6
21	Re ^I Tricarbonyl Complexes as Coordinate Covalent Inhibitors for the SARSâ€CoVâ€2 Main Cysteine Protease. Angewandte Chemie - International Edition, 2021, 60, 10716-10723.	7.2	48
22	Polymeric Encapsulation of a Ru(II)-Based Photosensitizer for Folate-Targeted Photodynamic Therapy of Drug Resistant Cancers. Journal of Medicinal Chemistry, 2021, 64, 4612-4622.	2.9	26
23	Ru(II) Polypyridine Complex-Functionalized Mesoporous Silica Nanoparticles as Photosensitizers for Cancer Targeted Photodynamic Therapy. ACS Applied Bio Materials, 2021, 4, 4394-4405.	2.3	26
24	Metal Complexes as Antiviral Agents for SARS oVâ€2. ChemBioChem, 2021, 22, 2600-2607.	1.3	45
25	Metal complexes for therapeutic applications. Trends in Chemistry, 2021, 3, 523-534.	4.4	67
26	Cancer cell membrane camouflaged iridium complexes functionalized black-titanium nanoparticles for hierarchical-targeted synergistic NIR-II photothermal and sonodynamic therapy. Biomaterials, 2021, 275, 120979.	5.7	82
27	Autophagy-Dependent Apoptosis Induced by Apoferritin–Cu(II) Nanoparticles in Multidrug-Resistant Colon Cancer Cells. ACS Applied Materials & Interfaces, 2021, 13, 38959-38968.	4.0	17
28	A mitochondrial-targeting iridium(<scp>iii</scp>) complex for H ₂ O ₂ -responsive and oxidative stress amplified two-photon photodynamic therapy. Inorganic Chemistry Frontiers, 2021, 8, 5045-5053.	3.0	9
29	Synthesis of tetranuclear rhenium(<scp>i</scp>) tricarbonyl metallacycles. Dalton Transactions, 2021, 50, 16147-16155.	1.6	3
30	Evaluating Metal–Ligand Interactions of Metal-Binding Isosteres Using Model Complexes. Inorganic Chemistry, 2021, 60, 17161-17172.	1.9	1
31	Metallodrug Profiling against SARSâ€CoVâ€2 Target Proteins Identifies Highly Potent Inhibitors of the S/ACE2 interaction and the Papainâ€like Protease PL ^{pro} . Chemistry - A European Journal, 2021, 27, 17928-17940.	1.7	41
32	Synthesis, Characterisation and Biological Evaluation of π-Extended Fe(II) Bipyridine Complexes as Potential Photosensitizers for Photodynamic Therapy. Inorganica Chimica Acta, 2020, 499, 119196.	1.2	10
33	Synthesis and Characterization of an Epidermal Growth Factor Receptorâ€Selective Ru ^{II} Polypyridyl–Nanobody Conjugate as a Photosensitizer for Photodynamic Therapy. ChemBioChem, 2020, 21, 531-542.	1.3	35
34	Combining Inorganic Chemistry and Biology: The Underestimated Potential of Metal Complexes in Medicine. ChemBioChem, 2020, 21, 3044-3046.	1.3	29
35	Polymeric Encapsulation of a Ruthenium Polypyridine Complex for Tumor Targeted One- and Two-Photon Photodynamic Therapy. ACS Applied Materials & Interfaces, 2020, 12, 54433-54444.	4.0	42
36	Synthesis, Characterization, and Biological Evaluation of the Polymeric Encapsulation of a Ruthenium(II) Polypyridine Complex with Pluronic Fâ€127/Poloxamerâ€407 for Photodynamic Therapy Applications. European Journal of Inorganic Chemistry, 2020, 2020, 3242-3248.	1.0	12

JOHANNES KARGES

#	Article	IF	CITATIONS
37	Critical discussion of the applications of metal complexes for 2-photon photodynamic therapy. Journal of Biological Inorganic Chemistry, 2020, 25, 1035-1050.	1.1	32
38	Rationally Designed Long-Wavelength Absorbing Ru(II) Polypyridyl Complexes as Photosensitizers for Photodynamic Therapy. Journal of the American Chemical Society, 2020, 142, 6578-6587.	6.6	144
39	Rationally designed ruthenium complexes for 1- and 2-photon photodynamic therapy. Nature Communications, 2020, 11, 3262.	5.8	173
40	Metal dipyrrin complexes as potential photosensitizers for photodynamic therapy. Inorganica Chimica Acta, 2020, 505, 119482.	1.2	17
41	A Multiâ€action and Multiâ€ŧarget Ru ^{II} –Pt ^{IV} Conjugate Combining Cancerâ€Activated Chemotherapy and Photodynamic Therapy to Overcome Drug Resistant Cancers. Angewandte Chemie - International Edition, 2020, 59, 7069-7075.	7.2	172
42	Synthesis, characterization and antiparasitic activity of organometallic derivatives of the anthelmintic drug albendazole. Dalton Transactions, 2020, 49, 6616-6626.	1.6	11
43	A Multiâ€action and Multiâ€ŧarget Ru ^{II} –Pt ^{IV} Conjugate Combining Cancerâ€Activated Chemotherapy and Photodynamic Therapy to Overcome Drug Resistant Cancers. Angewandte Chemie, 2020, 132, 7135-7141.	1.6	25
44	Ruthenium-initiated polymerization of lactide: a route to remarkable cellular uptake for photodynamic therapy of cancer. Chemical Science, 2020, 11, 2657-2663.	3.7	37
45	Towards Long Wavelength Absorbing Photodynamic Therapy Photosensitizers via the Extension of a [Ru(bipy) ₃] ²⁺ Core. European Journal of Inorganic Chemistry, 2019, 2019, 3704-3712.	1.0	31
46	Polymeric Encapsulation of Novel Homoleptic Bis(dipyrrinato) Zinc(II) Complexes with Long Lifetimes for Applications as Photodynamic Therapy Photosensitisers. Angewandte Chemie, 2019, 131, 14472-14478.	1.6	23
47	Polymeric Encapsulation of Novel Homoleptic Bis(dipyrrinato) Zinc(II) Complexes with Long Lifetimes for Applications as Photodynamic Therapy Photosensitisers. Angewandte Chemie - International Edition, 2019, 58, 14334-14340.	7.2	100
48	Polymeric Bis(dipyrrinato) Zinc(II) Nanoparticles as Selective Imaging Probes for Lysosomes of Cancer Cells. Inorganic Chemistry, 2019, 58, 12422-12432.	1.9	31
49	Systematic investigation of the antiproliferative activity of a series of ruthenium terpyridine complexes. Journal of Inorganic Biochemistry, 2019, 198, 110752.	1.5	47
50	Evaluation of the Potential of Cobalamin Derivatives Bearing Ru(II) Polypyridyl Complexes as Photosensitizers for Photodynamic Therapy. Helvetica Chimica Acta, 2019, 102, e1900104.	1.0	21
51	A Ru(II) polypyridyl complex bearing aldehyde functions as a versatile synthetic precursor for long-wavelength absorbing photodynamic therapy photosensitizers. Bioorganic and Medicinal Chemistry, 2019, 27, 2666-2675.	1.4	38
52	Towards Lightâ€Activated Ruthenium–Arene (RAPTAâ€Type) Prodrug Candidates. ChemBioChem, 2019, 20, 2876-2882.	1.3	30
53	Investigation of photo-activation on ruthenium(II)–arene complexes for the discovery of potential selective cytotoxic agents. Polyhedron, 2019, 172, 22-27.	1.0	16
54	Mesoporous silica nanoparticles functionalised with a photoactive ruthenium(<scp>ii</scp>) complex: exploring the formulation of a metal-based photodynamic therapy photosensitiser. Dalton Transactions, 2019, 48, 5940-5951.	1.6	65

JOHANNES KARGES

#	Article	IF	CITATIONS
55	Synthesis, Characterization, and Biological Evaluation of Red-Absorbing Fe(II) Polypyridine Complexes. Inorganics, 2019, 7, 4.	1.2	29
56	Critical Overview of the Use of Ru(II) Polypyridyl Complexes as Photosensitizers in One-Photon and Two-Photon Photodynamic Therapy. Accounts of Chemical Research, 2017, 50, 2727-2736.	7.6	454
57	Photoionization Yields in Intense fs-Laser Fields – A Systematic Investigation of Chirp Effects. Zeitschrift Fur Physikalische Chemie, 2015, 229, 1729-1746.	1.4	6
58	Clinical Development of Metal Complexes as Photosensitizers for Photodynamic Therapy of Cancer. Angewandte Chemie, 0, , .	1.6	15
59	Photoâ€Reduktion mit NIRâ€Licht von Zellkern akkumulierenden Pt ^{IV} â€Nanopartikeln für eine kombinierte Tumor ausgerichtete Chemotherapie und Photodynamische Immuntherapie. Angewandte Chemie, 0, , .	1.6	4
60	Rhenium complexes as antiviral agents for COVID-19. Journal of Coordination Chemistry, 0, , 1-5.	0.8	0
61	Chiral Rullâ€PtII Complexes Inducing Telomere Dysfunction against Cisplatinâ€Resistant Cancer Cells. Angewandte Chemie, 0, , .	1.6	0
62	Organometallic Derivatives of Decoquinate Targeted toward <i>Toxoplasma gondii</i> . Organometallics, 0, , .	1.1	0