
## Andrew J Baldwin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1235170/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Quantitative chemical exchange saturation transfer imaging of nuclear overhauser effects in acute ischemic stroke. Magnetic Resonance in Medicine, 2022, , .                                     | 1.9  | 2         |
| 2  | Reductive site-selective atypical <i>C</i> , <i>Z</i> -type/N2-C2 cleavage allows C-terminal protein amidation. Science Advances, 2022, 8, eabl8675.                                             | 4.7  | 1         |
| 3  | Pathogen-sugar interactions revealed by universal saturation transfer analysis. Science, 2022, 377, .                                                                                            | 6.0  | 24        |
| 4  | Cell-permeable lanthanide–platinum( <scp>iv</scp> ) anti-cancer prodrugs. Dalton Transactions, 2021,<br>50, 8761-8767.                                                                           | 1.6  | 6         |
| 5  | Fast Molecular Compression by a Hyperthermal Collision Gives Bond-Selective Mechanochemistry.<br>Physical Review Letters, 2021, 126, 056001.                                                     | 2.9  | 22        |
| 6  | A weakened interface in the P182L variant of HSP27 associated with severe Charcotâ€Marieâ€Tooth<br>neuropathy causes aberrant binding to interacting proteins. EMBO Journal, 2021, 40, e103811.  | 3.5  | 14        |
| 7  | Post-translational insertion of boron in proteins to probe and modulate function. Nature Chemical Biology, 2021, 17, 1245-1261.                                                                  | 3.9  | 15        |
| 8  | Light-driven post-translational installation of reactive protein side chains. Nature, 2020, 585, 530-537.                                                                                        | 13.7 | 100       |
| 9  | Conditional Disorder in Small Heat-shock Proteins. Journal of Molecular Biology, 2020, 432, 3033-3049.                                                                                           | 2.0  | 21        |
| 10 | Dynamic design: manipulation of millisecond timescale motions on the energy landscape of cyclophilin A. Chemical Science, 2020, 11, 2670-2680.                                                   | 3.7  | 16        |
| 11 | Local frustration determines loop opening during the catalytic cycle of an oxidoreductase. ELife, 2020, 9, .                                                                                     | 2.8  | 13        |
| 12 | INDIANA: An in-cell diffusion method to characterize the size, abundance and permeability of cells.<br>Journal of Magnetic Resonance, 2019, 302, 1-13.                                           | 1.2  | 11        |
| 13 | HspB1 phosphorylation regulates its intramolecular dynamics and mechanosensitive molecular chaperone interaction with filamin C. Science Advances, 2019, 5, eaav8421.                            | 4.7  | 52        |
| 14 | Local unfolding of the HSP27 monomer regulates chaperone activity. Nature Communications, 2019, 10, 1068.                                                                                        | 5.8  | 93        |
| 15 | Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions. Science, 2018, 359, 930-935.                                                        | 6.0  | 51        |
| 16 | Selective Radical Trifluoromethylation of Native Residues in Proteins. Journal of the American<br>Chemical Society, 2018, 140, 1568-1571.                                                        | 6.6  | 102       |
| 17 | Measuring Diffusion Constants of Invisible Protein Conformers by Tripleâ€Quantum <sup>1</sup> H<br>CPMG Relaxation Dispersion. Angewandte Chemie - International Edition, 2018, 57, 16777-16780. | 7.2  | 17        |
| 18 | Measuring Diffusion Constants of Invisible Protein Conformers by Tripleâ€Quantum 1 H CPMG<br>Relaxation Dispersion. Angewandte Chemie, 2018, 130, 17019-17022.                                   | 1.6  | 5         |

ANDREW J BALDWIN

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Formation of a Secretion-Competent Protein Complex by a Dynamic Wrap-around Binding Mechanism.<br>Journal of Molecular Biology, 2018, 430, 3157-3169.                                                                                            | 2.0  | 5         |
| 20 | The role of interfacial lipids in stabilizing membrane protein oligomers. Nature, 2017, 541, 421-424.                                                                                                                                            | 13.7 | 344       |
| 21 | Proline isomerization in the C-terminal region of HSP27. Cell Stress and Chaperones, 2017, 22, 639-651.                                                                                                                                          | 1.2  | 24        |
| 22 | Monitoring the Disassembly of Virus-like Particles by <sup>19</sup> F-NMR. Journal of the American<br>Chemical Society, 2017, 139, 5277-5280.                                                                                                    | 6.6  | 23        |
| 23 | Accommodating Protein Dynamics in the Modeling of Chemical Crosslinks. Structure, 2017, 25, 1751-1757.e5.                                                                                                                                        | 1.6  | 36        |
| 24 | Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific<br>protein on phase separation. Proceedings of the National Academy of Sciences of the United States of<br>America, 2017, 114, E8194-E8203. | 3.3  | 381       |
| 25 | Automatic Assignment of Methyl-NMR Spectra of Supramolecular Machines Using Graph Theory.<br>Journal of the American Chemical Society, 2017, 139, 9523-9533.                                                                                     | 6.6  | 48        |
| 26 | Determination of an optimally sensitive and specific chemical exchange saturation transfer MRI quantification metric in relevant biological phantoms. NMR in Biomedicine, 2016, 29, 1624-1633.                                                   | 1.6  | 12        |
| 27 | Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. Nature<br>Chemistry, 2016, 8, 569-575.                                                                                                                   | 6.6  | 278       |
| 28 | Harnessing NMR relaxation interference effects to characterise supramolecular assemblies. Chemical Communications, 2016, 52, 7450-7453.                                                                                                          | 2.2  | 6         |
| 29 | Posttranslational mutagenesis: A chemical strategy for exploring protein side-chain diversity. Science, 2016, 354, .                                                                                                                             | 6.0  | 247       |
| 30 | Studying the Conformational Equilibrium of the N-Terminal Domain of Dsbd by NMR and Computer<br>Simulation. Biophysical Journal, 2015, 108, 184a.                                                                                                | 0.2  | 0         |
| 31 | AB-Crystallin Binds to Titin Ig Domains and Increases Stiffness of Skinned Cardiac Trabeculae.<br>Biophysical Journal, 2015, 108, 444a.                                                                                                          | 0.2  | Ο         |
| 32 | Phase Transition of a Disordered Nuage Protein Generates Environmentally Responsive Membraneless<br>Organelles. Molecular Cell, 2015, 57, 936-947.                                                                                               | 4.5  | 1,408     |
| 33 | Combining tandem mass spectrometry with ion mobility separation to determine the architecture of polydisperse proteins. International Journal of Mass Spectrometry, 2015, 377, 663-671.                                                          | 0.7  | 16        |
| 34 | Investigating the Mechanisms of Amylolysis of Starch Granules by Solution-State NMR.<br>Biomacromolecules, 2015, 16, 1614-1621.                                                                                                                  | 2.6  | 44        |
| 35 | Collision Cross Sections for Structural Proteomics. Structure, 2015, 23, 791-799.                                                                                                                                                                | 1.6  | 231       |
| 36 | Bayesian Deconvolution of Mass and Ion Mobility Spectra: From Binary Interactions to Polydisperse<br>Ensembles. Analytical Chemistry, 2015, 87, 4370-4376.                                                                                       | 3.2  | 663       |

ANDREW J BALDWIN

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Quantifying the stabilizing effects of protein–ligand interactions in the gas phase. Nature<br>Communications, 2015, 6, 8551.                                                                                              | 5.8  | 136       |
| 38 | The structured core domain of αB-crystallin can prevent amyloid fibrillation and associated toxicity.<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1562-70.             | 3.3  | 181       |
| 39 | An exact solution for R2,eff in CPMG experiments in the case of two site chemical exchange. Journal of Magnetic Resonance, 2014, 244, 114-124.                                                                             | 1.2  | 42        |
| 40 | Phase Separation of Disordered Protein in the Formation of Membrane-Less Organelles. Biophysical<br>Journal, 2014, 106, 35a.                                                                                               | 0.2  | 1         |
| 41 | Membrane proteins bind lipids selectively to modulate their structure and function. Nature, 2014, 510, 172-175.                                                                                                            | 13.7 | 665       |
| 42 | An R1ϕexpression for a spin in chemical exchange between two sites with unequal transverse relaxation rates. Journal of Biomolecular NMR, 2013, 55, 211-218.                                                               | 1.6  | 32        |
| 43 | C-terminal interactions mediate the quaternary dynamics of αB-crystallin. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20110405.                                                     | 1.8  | 70        |
| 44 | Probing Dynamic Conformations of the High-Molecular-Weight αB-Crystallin Heat Shock Protein<br>Ensemble by NMR Spectroscopy. Journal of the American Chemical Society, 2012, 134, 15343-15350.                             | 6.6  | 63        |
| 45 | Twisting Transition between Crystalline and Fibrillar Phases of Aggregated Peptides. Physical Review<br>Letters, 2012, 109, 158101.                                                                                        | 2.9  | 48        |
| 46 | Small Heat-Shock Proteins: Paramedics of the Cell. Topics in Current Chemistry, 2012, 328, 69-98.                                                                                                                          | 4.0  | 116       |
| 47 | The Morphology of Decorated Amyloid Fibers is Controlled by the Conformation and Position of the Displayed Protein. ACS Nano, 2012, 6, 1332-1346.                                                                          | 7.3  | 19        |
| 48 | Dynamic binding. Nature, 2012, 488, 165-166.                                                                                                                                                                               | 13.7 | 10        |
| 49 | Measurement of the signs of methyl 13C chemical shift differences between interconverting ground<br>and excited protein states by R 1ï•: an application to î±B-crystallin. Journal of Biomolecular NMR, 2012, 53,<br>1-12. | 1.6  | 18        |
| 50 | Dissecting Heterogeneous Molecular Chaperone Complexes Using a Mass Spectrum Deconvolution Approach. Chemistry and Biology, 2012, 19, 599-607.                                                                             | 6.2  | 70        |
| 51 | Perturbation of the Stability of Amyloid Fibrils through Alteration of Electrostatic Interactions.<br>Biophysical Journal, 2011, 100, 2783-2791.                                                                           | 0.2  | 121       |
| 52 | Metastability of Native Proteins and the Phenomenon of Amyloid Formation. Journal of the American<br>Chemical Society, 2011, 133, 14160-14163.                                                                             | 6.6  | 369       |
| 53 | αB-Crystallin Polydispersity Is a Consequence of Unbiased Quaternary Dynamics. Journal of Molecular<br>Biology, 2011, 413, 297-309.                                                                                        | 2.0  | 122       |
| 54 | Quaternary Dynamics of αB-Crystallin as a Direct Consequence of Localised Tertiary Fluctuations in the C-Terminus. Journal of Molecular Biology, 2011, 413, 310-320.                                                       | 2.0  | 89        |

ANDREW J BALDWIN

| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Polydispersity of $\hat{I}\pm B$ -Crystallin Is Rationalized by an Interconverting Polyhedral Architecture. Structure, 2011, 19, 1855-1863.                                                                                                                          | 1.6 | 116       |
| 56 | The Quaternary Organization and Dynamics of the Molecular Chaperone HSP26 Are Thermally Regulated. Chemistry and Biology, 2010, 17, 1008-1017.                                                                                                                           | 6.2 | 45        |
| 57 | Quaternary dynamics and plasticity underlie small heat shock protein chaperone function.<br>Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2007-2012.                                                                       | 3.3 | 231       |
| 58 | <sup>13</sup> CHD <sub>2</sub> Methyl Group Probes of Millisecond Time Scale Exchange in Proteins<br>by <sup>1</sup> H Relaxation Dispersion: An Application to Proteasome Gating Residue Dynamics.<br>Journal of the American Chemical Society, 2010, 132, 10992-10995. | 6.6 | 60        |
| 59 | NMR spectroscopy brings invisible protein states into focus. Nature Chemical Biology, 2009, 5, 808-814.                                                                                                                                                                  | 3.9 | 403       |
| 60 | Measurement of Methyl Axis Orientations in Invisible, Excited States of Proteins by Relaxation<br>Dispersion NMR Spectroscopy. Journal of the American Chemical Society, 2009, 131, 11939-11948.                                                                         | 6.6 | 33        |
| 61 | Measurement of Amyloid Fibril Length Distributions by Inclusion of Rotational Motion in Solution<br>NMR Diffusion Measurements. Angewandte Chemie - International Edition, 2008, 47, 3385-3387.                                                                          | 7.2 | 47        |
| 62 | Contribution of rotational diffusion to pulsed field gradient diffusion measurements. Journal of Chemical Physics, 2007, 127, 114505.                                                                                                                                    | 1.2 | 23        |
| 63 | Characterisation of Amyloid Fibril Formation by Small Heat-shock Chaperone Proteins Human αA-, αB-<br>and R120G αB-Crystallins. Journal of Molecular Biology, 2007, 372, 470-484.                                                                                        | 2.0 | 93        |
| 64 | Cytochrome Display on Amyloid Fibrils. Journal of the American Chemical Society, 2006, 128, 2162-2163.                                                                                                                                                                   | 6.6 | 146       |