Baoguo Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1235053/publications.pdf

Version: 2024-02-01

304743 254184 2,412 45 22 43 h-index citations g-index papers 48 48 48 1737 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A Powerful Chiral Super BrÃnsted C–H Acid for Asymmetric Catalysis. Journal of the American Chemical Society, 2022, 144, 2853-2860.	13.7	21
2	Asymmetric αâ€Allylation of Glycinate with Switched Chemoselectivity Enabled by Customized Bifunctional Pyridoxal Catalysts. Angewandte Chemie, 2022, 134, .	2.0	2
3	Asymmetric αâ€Allylation of Glycinate with Switched Chemoselectivity Enabled by Customized Bifunctional Pyridoxal Catalysts. Angewandte Chemie - International Edition, 2022, 61, e202200850.	13.8	24
4	Enantioselective Synthesis of Pyroglutamic Acid Esters from Glycinate via Carbonyl Catalysis. Angewandte Chemie, 2021, 133, 10682-10686.	2.0	6
5	Enantioselective Synthesis of Pyroglutamic Acid Esters from Glycinate via Carbonyl Catalysis. Angewandte Chemie - International Edition, 2021, 60, 10588-10592.	13.8	38
6	Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis. Angewandte Chemie, 2021, 133, 20328-20334.	2.0	4
7	Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis. Angewandte Chemie - International Edition, 2021, 60, 20166-20172.	13.8	32
8	Asymmetric biomimetic transamination of \hat{l}_{\pm} -keto amides to peptides. Nature Communications, 2021, 12, 5174.	12.8	23
9	Frontispiz: Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis. Angewandte Chemie, 2021, 133, .	2.0	0
10	Frontispiece: Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
11	Decarboxylative Umpolung Synthesis of Amines from Carbonyl Compounds. Synlett, 2020, 31, 1543-1550.	1.8	11
12	Asymmetric Intramolecular Hydroalkoxylation of Unactivated Alkenes Catalyzed by Chiral N―Triflyl Phosphoramide and TiCl 4 â€. Chinese Journal of Chemistry, 2020, 38, 565-569.	4.9	11
13	Biomimetic Chiral Pyridoxal and Pyridoxamine Catalysts. Chinese Journal of Chemistry, 2019, 37, 103-112.	4.9	34
14	Inside Cover: Biomimetic Chiral Pyridoxal and Pyridoxamine Catalysts (Chin. J. Chem. 2/2019). Chinese Journal of Chemistry, 2019, 37, 94-94.	4.9	4
15	Pd-Catalyzed Oxidative Heck Reaction of Grignard Reagents with Diaziridinone as Oxidant. Organic Letters, 2019, 21, 5157-5161.	4.6	5
16	Indeneâ€Based Donorâ€Acceptor Type Small Molecular Semiconductors for Highâ€Performance nâ€Channel Transistors. ChemistrySelect, 2019, 4, 4217-4221.	1.5	3
17	Enantioselective biomimetic transamination of \hat{l}_{\pm} -keto acids catalyzed by H4-naphthalene-derived axially chiral biaryl pyridoxamines. Tetrahedron Letters, 2018, 59, 1028-1033.	1.4	8
18	An efficient HCl promoted Petasis reaction of 2-pyridinecarbaldehydes, amines and 1,2-oxborol-2(5H)-ols. Tetrahedron Letters, 2018, 59, 2502-2505.	1.4	3

#	Article	IF	CITATIONS
19	Intramolecular Umpolung Synthesis of Exocyclic \hat{l}^2 -Amino Alcohols through Decarboxylative Amination. ACS Omega, 2018, 3, 14671-14679.	3.5	3
20	Aminative Umpolung cyclization for synthesis of chiral exocyclic vicinal diamines. Organic and Biomolecular Chemistry, 2018, 16, 7498-7502.	2.8	7
21	Carbonyl catalysis enables a biomimetic asymmetric Mannich reaction. Science, 2018, 360, 1438-1442.	12.6	141
22	Highly regioselective hydroformylation of olefins with formic acid instead of toxic and flammable CO/H2. Science China Chemistry, 2017, 60, 839-840.	8.2	0
23	Decarboxylative Umpolung of conjugated enals to \hat{l}^2 -carbanions for intramolecular nucleophilic addition to an aldehyde. Organic Chemistry Frontiers, 2017, 4, 1586-1589.	4.5	8
24	Enzyme-Inspired Axially Chiral Pyridoxamines Armed with a Cooperative Lateral Amine Chain for Enantioselective Biomimetic Transamination. Journal of the American Chemical Society, 2016, 138, 10730-10733.	13.7	75
25	A new type of chiral-pyridoxamines for catalytic asymmetric transamination of \hat{l}_{\pm} -keto acids. Tetrahedron Letters, 2016, 57, 4612-4615.	1.4	6
26	Asymmetric Transamination of \hat{l}_{\pm} -Keto Acids Catalyzed by Chiral Pyridoxamines. Organic Letters, 2016, 18, 3658-3661.	4.6	27
27	Pd-catalyzed asymmetric α-allylic alkylation of thioamides. Tetrahedron Letters, 2015, 56, 595-598.	1.4	8
28	Chiral Pyridoxal-Catalyzed Asymmetric Biomimetic Transamination of \hat{l}_{\pm} -Keto Acids. Organic Letters, 2015, 17, 5784-5787.	4.6	54
29	Synthesis of αâ€Methylideneâ€Î³â€nmino Acid Esters from Aldehydes <i>via</i> an Aminative Umpolung Strategy Advanced Synthesis and Catalysis, 2014, 356, 3219-3224.	^{/.} 4.3	22
30	Catalytic Diamination of Olefins via N–N Bond Activation. Accounts of Chemical Research, 2014, 47, 3665-3678.	15.6	260
31	Aminative Umpolung of Aldehydes to $\hat{l}\pm$ -Amino Anion Equivalents for Pd-Catalyzed Allylation: An Efficient Synthesis of Homoallylic Amines. Organic Letters, 2014, 16, 720-723.	4.6	32
32	Aminative Umpolung Synthesis of Aryl Vicinal Diamines from Aromatic Aldehydes. Organic Letters, 2014, 16, 2118-2121.	4.6	45
33	Highly Efficient Cu(I)-Catalyzed Oxidation of Alcohols to Ketones and Aldehydes with Diaziridinone. Organic Letters, 2013, 15, 992-995.	4.6	51
34	Pd-catalyzed allylic alkylation of thioamides. Tetrahedron Letters, 2013, 54, 6501-6503.	1.4	14
35	The NH Functional Group in Organometallic Catalysis. Angewandte Chemie - International Edition, 2013, 52, 4744-4788.	13.8	324
36	Pd-catalyzed α-arylation of thioamides. Tetrahedron Letters, 2013, 54, 3060-3062.	1.4	17

#	Article	IF	CITATION
37	Cu(I)-Catalyzed Diamination of Conjugated Dienes. Complementary Regioselectivity from Two Distinct Mechanistic Pathways Involving Cu(II) and Cu(III) Species. Journal of the American Chemical Society, 2011, 133, 20890-20900.	13.7	110
38	Cu(I)-Catalyzed Regioselective Diamination of Conjugated Dienes via Dual Mechanistic Pathways. Journal of the American Chemical Society, 2010, 132, 11009-11011.	13.7	134
39	Synthetic and Mechanistic Studies on Pd(0)-Catalyzed Diamination of Conjugated Dienes. Journal of the American Chemical Society, 2010, 132, 3523-3532.	13.7	131
40	Cu(I)-Catalyzed Diamination of Conjugated Olefins with Tunable Anionic Counterions. A Possible Approach to Asymmetric Diamination. Journal of Organic Chemistry, 2009, 74, 8392-8395.	3.2	101
41	Cu(I)-Catalyzed Câ^'H α-Amination of Aryl Ketones: Direct Synthesis of Imidazolinones. Journal of Organic Chemistry, 2009, 74, 4411-4413.	3.2	21
42	Cu(I)-Catalyzed Cycloguanidination of Olefins. Organic Letters, 2008, 10, 1087-1090.	4.6	84
43	A Cu(I)-Catalyzed Câ^'H α-Amination of Esters. Direct Synthesis of Hydantoins. Journal of the American Chemical Society, 2008, 130, 7220-7221.	13.7	106
44	A Facile Pd(0)-Catalyzed Regio- and Stereoselective Diamination of Conjugated Dienes and Trienes. Journal of the American Chemical Society, 2007, 129, 762-763.	13.7	219
45	Cu(I)-Catalyzed Intermolecular Diamination of Activated Terminal Olefins. Organic Letters, 2007, 9, 4943-4945.	4.6	111