Tsutomu Nakahara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1235009/publications.pdf

Version: 2024-02-01

218677 233421 2,703 135 26 45 citations g-index h-index papers 140 140 140 3152 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	YAP mediates compensatory cardiac hypertrophy through aerobic glycolysis in response to pressure overload. Journal of Clinical Investigation, 2022, 132, .	8.2	43
2	LPA2 promotes neuronal differentiation and neurite formation in neocortical development. Biochemical and Biophysical Research Communications, 2022, 598, 89-94.	2.1	2
3	<i>N</i> -methyl-D-aspartic acid receptor-mediated vasodilation is attenuated in the retinas of diabetic rats. Current Eye Research, 2022, , 1-27.	1.5	1
4	Pharmacological inhibition of Na+/K+-ATPase induces neurovascular degeneration and glial cell alteration in the rat retina. Experimental Eye Research, 2022, 220, 109107.	2.6	5
5	Pharmacological depletion of retinal neurons prevents vertical angiogenic sprouting without affecting the superficial vascular plexus. Developmental Dynamics, 2021, 250, 497-512.	1.8	3
6	Role of Epoxyeicosatrienoic Acids in Acetylcholine-Induced Dilation of Rat Retinal Arterioles & lt;i>in Vivo. Biological and Pharmaceutical Bulletin, 2021, 44, 82-87.	1.4	5
7	L-Citrulline ameliorates the attenuation of acetylcholine-induced vasodilation of retinal arterioles in diabetic rats. Heliyon, 2021, 7, e06532.	3.2	3
8	Metformin Protects against NMDA-Induced Retinal Injury through the MEK/ERK Signaling Pathway in Rats. International Journal of Molecular Sciences, 2021, 22, 4439.	4.1	15
9	Impairment of endothelium-dependent vasodilator function of retinal blood vessels in adult rats with a history of retinopathy of prematurity. Journal of Pharmacological Sciences, 2021, 146, 233-243.	2.5	1
10	Involvement of Gap Junctions in Acetylcholine-Induced Endothelium-Derived Hyperpolarization-Type Dilation of Retinal Arterioles in Rats. Biological and Pharmaceutical Bulletin, 2021, 44, 1860-1865.	1.4	0
11	Activation of transient receptor potential vanilloid 4 channels dilates rat retinal arterioles through nitric oxide- and BKCa channel-dependent mechanisms in vivo. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 35-41.	3.0	4
12	Role of transient receptor potential vanilloid subtype 4 in the regulation of azoymethane/dextran sulphate sodium-induced colitis-associated cancer in mice. European Journal of Pharmacology, 2020, 867, 172853.	3 . 5	9
13	Changes in components of the neurovascular unit in the retina in a rat model of retinopathy of prematurity. Cell and Tissue Research, 2020, 379, 473-486.	2.9	4
14	The process of revascularization in the neonatal mouse retina following short-term blockade of vascular endothelial growth factor receptors. Cell and Tissue Research, 2020, 382, 529-549.	2.9	6
15	Involvement of Gi protein–dependent BKCa channel activation in β2-adrenoceptor-mediated dilation of retinal arterioles in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 2043-2052.	3.0	4
16	4-Aminopyridine, a Voltage-Gated K ⁺ Channel Inhibitor, Attenuates Nitric Oxide-Mediated Vasodilation of Retinal Arterioles in Rats. Biological and Pharmaceutical Bulletin, 2020, 43, 1123-1127.	1.4	4
17	Abnormal Vascular Phenotypes Associated with the Timing of Interruption of Retinal Vascular Development in Rats. Biological and Pharmaceutical Bulletin, 2020, 43, 859-863.	1.4	0
18	Attenuation of Retinal Endothelial Vasodilator Function in a Rat Model of Retinopathy of Prematurity. Current Eye Research, 2019, 44, 1360-1368.	1.5	1

#	Article	IF	CITATIONS
19	Cellular Mechanisms of Angiogenesis in Neonatal Rat Models of Retinal Neurodegeneration. International Journal of Molecular Sciences, 2019, 20, 4759.	4.1	7
20	Role of Neuron–Glia Signaling in Regulation of Retinal Vascular Tone in Rats. International Journal of Molecular Sciences, 2019, 20, 1952.	4.1	8
21	Involvement of matrix metalloproteinases in capillary degeneration following NMDA-induced neurotoxicity in the neonatal rat retina. Experimental Eye Research, 2019, 182, 101-108.	2.6	4
22	Probucol Slows the Progression of Cataracts in Streptozotocin-Induced Hyperglycemic Rats. Pharmacology, 2019, 103, 212-219.	2.2	4
23	Iron-chelating agents attenuate NMDA-Induced neuronal injury via reduction of oxidative stress in the rat retina. Experimental Eye Research, 2018, 171, 30-36.	2.6	33
24	GYY4137, an Extended-Release Hydrogen Sulfide Donor, Reduces NMDA-Induced Neuronal Injury in the Murine Retina. Biological and Pharmaceutical Bulletin, 2018, 41, 657-660.	1.4	13
25	Establishment of an abnormal vascular patterning model in the mouse retina. Journal of Pharmacological Sciences, 2018, 136, 177-188.	2.5	10
26	Retinal neuronal cell loss prevents abnormal retinal vascular growth in a rat model of retinopathy of prematurity. Experimental Eye Research, 2018, 168, 115-127.	2.6	8
27	Transient phenotypic changes in endothelial cells and pericytes in neonatal mouse retina following shortâ€term blockade of vascular endothelial growth factor receptors. Developmental Dynamics, 2018, 247, 699-711.	1.8	3
28	Methylglyoxal Impairs \hat{i}^2 ₂-Adrenoceptor-Mediated Vasodilatory Mechanisms in Rat Retinal Arterioles. Biological and Pharmaceutical Bulletin, 2018, 41, 272-276.	1.4	4
29	Role of Glial Cells in $\hat{1}$ /4-Opioid Receptor-Mediated Vasodilation in the Rat Retina. Current Eye Research, 2018, 43, 350-356.	1.5	4
30	Anti-angiogenic effects of valproic acid in a mouse model of oxygen-induced retinopathy. Journal of Pharmacological Sciences, 2018, 138, 203-208.	2.5	11
31	Anti-cataract Effect of Resveratrol in High-Glucose-Treated Streptozotocin-Induced Diabetic Rats. Biological and Pharmaceutical Bulletin, 2018, 41, 1586-1592.	1.4	29
32	Brilliant Blue G protects against photoreceptor injury in a murine endotoxin-induced uveitis model. Experimental Eye Research, 2018, 177, 45-49.	2.6	5
33	A delay in vascularization induces abnormal astrocyte proliferation and migration in the mouse retina. Developmental Dynamics, 2017, 246, 186-200.	1.8	15
34	Anti-diabetic drug metformin dilates retinal blood vessels through activation of AMP-activated protein kinase in rats. European Journal of Pharmacology, 2017, 798, 66-71.	3.5	8
35	Stimulation of \hat{l} 4-opioid receptors dilates retinal arterioles by neuronal nitric oxide synthase-derived nitric oxide in rats. European Journal of Pharmacology, 2017, 803, 124-129.	3.5	10
36	MEK/ERK- and calcineurin/NFAT-mediated mechanism of cerebral hyperemia and brain injury following NMDA receptor activation. Biochemical and Biophysical Research Communications, 2017, 488, 329-334.	2.1	2

#	Article	IF	Citations
37	Stimulation of \hat{l}^21 - and \hat{l}^22 -adrenoceptors dilates retinal blood vessels in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 527-533.	3.0	7
38	l-Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway. Journal of Pharmacological Sciences, 2017, 133, 146-155.	2.5	8
39	Opioid receptor activation is involved in neuroprotection induced by TRPV1 channel activation against excitotoxicity in the rat retina. European Journal of Pharmacology, 2017, 812, 57-63.	3.5	12
40	Probucol prevents the attenuation of \hat{l}^2 2-adrenoceptor-mediated vasodilation of retinal arterioles in diabetic rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 1247-1253.	3.0	5
41	Activation inhibitors of nuclear factor kappa B protect neurons against the NMDA-induced damage in the rat retina. Journal of Pharmacological Sciences, 2017, 135, 72-80.	2.5	24
42	Mammalian Target of Rapamycin (mTOR) as a Potential Therapeutic Target in Pathological Ocular Angiogenesis. Biological and Pharmaceutical Bulletin, 2017, 40, 2045-2049.	1.4	29
43	Exposure to highâ€concentration oxygen in the neonatal period induces abnormal retinal vascular patterning in mice. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2016, 107, 216-224.	1.4	7
44	Apelin-36 is protective against N-methyl-D-aspartic-acid-induced retinal ganglion cell death in the mice. European Journal of Pharmacology, 2016, 791, 213-220.	3.5	21
45	Protective effects of PFâ€4708671 against <i>N</i> à€methylâ€ <scp>d</scp> â€aspartic acidâ€induced retinal damage in rats. Fundamental and Clinical Pharmacology, 2016, 30, 529-536.	1.9	4
46	Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats. Experimental Eye Research, 2016, 143, 120-131.	2.6	16
47	Effect of Long-Term Treatment of L-Ornithine on Visual Function and Retinal Histology in the Rats. Biological and Pharmaceutical Bulletin, 2015, 38, 139-143.	1.4	6
48	Preventive Effects of Rapamycin on Inflammation and Capillary Degeneration in a Rat Model of NMDA-Induced Retinal Injury. Biological and Pharmaceutical Bulletin, 2015, 38, 321-324.	1.4	14
49	Vasodilator Effects of Elcatonin, a Synthetic Eel Calcitonin, on Retinal Blood Vessels in Rats. Biological and Pharmaceutical Bulletin, 2015, 38, 1536-1541.	1.4	1
50	Protective Effects of Everolimus against <i>N</i> -Methyl-D-aspartic Acid-Induced Retinal Damage in Rats. Biological and Pharmaceutical Bulletin, 2015, 38, 1765-1771.	1.4	13
51	Retinal region-dependent susceptibility of capillaries to high-concentration oxygen exposure and vascular endothelial growthÂfactor receptor inhibition in neonatal mice. Journal of Pharmacological Sciences, 2015, 129, 107-118.	2.5	4
52	Impaired retinal vasodilator response to acetylcholine in a rat model of NMDA-induced retinal degeneration. Journal of Pharmacological Sciences, 2015, 127, 211-216.	2.5	7
53	4-Hydroxy-2-nonenal attenuates \hat{I}^2 2-adrenoceptor-mediated vasodilation of rat retinal arterioles. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 575-582.	3.0	9
54	Structural and functional changes in retinal vasculature induced by retinal ischemia-reperfusion in rats. Experimental Eye Research, 2015, 135, 134-145.	2.6	53

#	Article	IF	Citations
55	Age-Dependent Changes in the Severity of Capillary Degeneration in Rat Retina Following <i>N </i> -Methyl-D-Aspartate-Induced Neurotoxicity. Current Eye Research, 2015, 40, 549-553.	1.5	11
56	P2X7 receptor antagonists protect against N-methyl-d-aspartic acid-induced neuronal injury in the rat retina. European Journal of Pharmacology, 2015, 756, 52-58.	3.5	30
57	High-mobility group Box-1 is involved in NMDA-induced retinal injury the in rat retina. Experimental Eye Research, 2015, 137, 63-70.	2.6	17
58	l-Citrulline dilates rat retinal arterioles via nitric oxide- and prostaglandin-dependent pathways inÂvivo. Journal of Pharmacological Sciences, 2015, 127, 419-423.	2.5	18
59	Involvement of prostaglandin I2 in nitric oxide-induced vasodilation of retinal arterioles in rats. European Journal of Pharmacology, 2015, 764, 249-255.	3.5	16
60	Regression of retinal capillaries following <i>N</i> à€methylâ€Dâ€aspartateâ€induced neurotoxicity in the neonatal rat retina. Journal of Neuroscience Research, 2015, 93, 380-390.	2.9	13
61	Effects of mTOR inhibition on normal retinal vascular development in the mouse. Experimental Eye Research, 2014, 129, 127-134.	2.6	18
62	Treatment of Midâ€Pregnant Mice with KRN633, an Inhibitor of Vascular Endothelial Growth Factor Receptor Tyrosine Kinase, Induces Abnormal Retinal Vascular Patterning in Their Newborn Pups. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2014, 101, 293-299.	1.4	6
63	Activation of the TRPV1 channel attenuates N-methyl-d-aspartic acid-induced neuronal injury in the rat retina. European Journal of Pharmacology, 2014, 733, 13-22.	3.5	31
64	Rapamycin prevents <i>N</i> à€methylâ€Dâ€aspartateâ€induced retinal damage through an ERKâ€dependent mechanism in rats. Journal of Neuroscience Research, 2014, 92, 692-702.	2.9	20
65	Effects of pre- and post-natal treatment with KRN633, an inhibitor of vascular endothelial growth factor receptor tyrosine kinase, on retinal vascular development and patterning in mice. Experimental Eye Research, 2014, 120, 127-137.	2.6	18
66	Hydrogen sulfide attenuates NMDA-induced neuronal injury via its anti-oxidative activity in the rat retina. Experimental Eye Research, 2014, 120, 90-96.	2.6	41
67	Treatment of Newborn Mice with Inhibitors of Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Induces Abnormal Retinal Vascular Patterning. Biological and Pharmaceutical Bulletin, 2014, 37, 1986-1989.	1.4	6
68	Anti-angiogenic Effects of Mammalian Target of Rapamycin Inhibitors in a Mouse Model of Oxygen-Induced Retinopathy. Biological and Pharmaceutical Bulletin, 2014, 37, 1838-1842.	1.4	42
69	ISO-1, a macrophage migration inhibitory factor antagonist, prevents N-methyl-d-aspartate-induced retinal damage. European Journal of Pharmacology, 2013, 718, 138-144.	3.5	14
70	Role of Vascular Endothelial Growth Factor in Maintenance of Pregnancy in Mice. Endocrinology, 2013, 154, 900-910.	2.8	16
71	Differential effects of LY294002 and wortmannin on neurons and vascular endothelial cells in the rat retina. Pharmacological Reports, 2013, 65, 854-862.	3.3	9
72	Protective effects of TGF- \hat{l}^2 inhibitors in a rat model of NMDA-induced retinal degeneration. European Journal of Pharmacology, 2013, 699, 188-193.	3.5	30

#	Article	IF	CITATIONS
73	KRN633, an Inhibitor of Vascular Endothelial Growth Factor Receptor Tyrosine Kinase, Induces Intrauterine Growth Restriction in Mice. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2013, 98, 297-303.	1.4	5
74	Neurovascular Interactions in the Retina: Physiological and Pathological Roles. Journal of Pharmacological Sciences, 2013, 123, 79-84.	2.5	43
75	GP-1447, an Inhibitor of Aldose Reductase, Prevents the Progression of Diabetic Cataract in Rats. Biological and Pharmaceutical Bulletin, 2012, 35, 866-872.	1.4	22
76	Effect of Nafamostat on <i>N</i> -Methyl- <small>D</small> -aspartate-Induced Retinal Neuronal and Capillary Degeneration in Rats. Biological and Pharmaceutical Bulletin, 2012, 35, 2209-2213.	1.4	15
77	Protective effects of the \hat{I}^2 3-adrenoceptor agonist CL316243 against N-methyl-D-aspartate-induced retinal neurotoxicity. Naunyn-Schmiedeberg's Archives of Pharmacology, 2012, 385, 1077-1081.	3.0	19
78	BMS-191011, an Opener of Large-Conductance Ca2+-Activated Potassium Channels, Dilates Rat Retinal Arterioles in Vivo. Biological and Pharmaceutical Bulletin, 2011, 34, 150-152.	1.4	17
79	Involvement of Bradykinin in Trypsin-Induced Urinary Bladder Contraction in Cyclophosphamide-Treated Rats. Biological and Pharmaceutical Bulletin, 2011, 34, 1122-1125.	1.4	0
80	Resveratrol prevents bradykinin-induced contraction of rat urinary bladders by decreasing prostaglandin production and calcium influx. European Journal of Pharmacology, 2011, 666, 189-195.	3 . 5	10
81	Vasodilation of retinal arterioles induced by activation of BKCa channels is attenuated in diabetic rats. European Journal of Pharmacology, 2011, 669, 94-99.	3.5	25
82	Noradrenaline contracts rat retinal arterioles via stimulation of $\hat{l}\pm 1A$ - and $\hat{l}\pm 1D$ -adrenoceptors. European Journal of Pharmacology, 2011, 673, 65-69.	3 . 5	14
83	Role of calcium-activated potassium channels in acetylcholine-induced vasodilation of rat retinal arterioles in vivo. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 383, 27-34.	3.0	25
84	Role of \hat{I}^2 3-adrenoceptors in regulation of retinal vascular tone in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 384, 603-608.	3.0	24
85	Effects of KRN633, an Inhibitor of Vascular Endothelial Growth Factor Receptor-2 Tyrosine Kinase, on Vascular Development of Placenta and Fetus of Mid Pregnancy in Mice. Journal of Pharmacological Sciences, 2010, 112, 290-298.	2.5	14
86	Histological Protection by Donepezil Against Neurodegeneration Induced by Ischemia–Reperfusion in the Rat Retina. Journal of Pharmacological Sciences, 2010, 112, 327-335.	2.5	27
87	Hyperglycemia Impairs Acetylcholine-Induced Vasodilation of Retinal Arterioles Through Polyol Pathway–Independent Mechanisms in Rats. Journal of Pharmacological Sciences, 2010, 112, 336-342.	2.5	8
88	Pharmacological evidence for the presence of functional \hat{l}^2 3-adrenoceptors in rat retinal blood vessels. Naunyn-Schmiedeberg's Archives of Pharmacology, 2010, 382, 119-126.	3.0	50
89	Protective effect of all-trans retinoic acid on NMDA-induced neuronal cell death in rat retina. European Journal of Pharmacology, 2010, 635, 56-61.	3 . 5	26
90	Retinal blood vessels are damaged in a rat model of NMDA-induced retinal degeneration. Neuroscience Letters, 2010, 485, 55-59.	2.1	42

#	Article	IF	Citations
91	Nitric oxide dilates rat retinal blood vessels by cyclooxygenase-dependent mechanisms. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R968-R977.	1.8	31
92	Role of cyclooxygenase in vasodilation of retinal blood vessels induced by bradykinin in Brown Norway rats. Vascular Pharmacology, 2009, 51, 119-124.	2.1	13
93	Intravenously administered phosphodiesterase 4 inhibitors dilate retinal blood vessels in rats. European Journal of Pharmacology, 2009, 602, 112-116.	3.5	14
94	The prostanoid EP2 receptor agonist ONO-AE1-259-01 protects against glutamate-induced neurotoxicity in rat retina. European Journal of Pharmacology, 2009, 616, 64-67.	3.5	26
95	Histological protection by cilnidipine, a dual L/N-type Ca2+ channel blocker, against neurotoxicity induced by ischemia–reperfusion in rat retina. Experimental Eye Research, 2009, 88, 974-982.	2.6	39
96	Hyperglycemia Accelerates Impairment of Vasodilator Responses to Acetylcholine of Retinal Blood Vessels in Rats. Journal of Pharmacological Sciences, 2009, 110, 160-168.	2.5	31
97	Vasodilator effects of adenosine on retinal arterioles in streptozotocin-induced diabetic rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 376, 423-430.	3.0	23
98	Î ² -Adrenoceptor-mediated vasodilation of retinal blood vessels is reduced in streptozotocin-induced diabetic rats. Vascular Pharmacology, 2008, 49, 77-83.	2.1	24
99	A Novel High Resolution In Vivo Digital Imaging System for the Evaluation of Experimental Cataract in Diabetic Rats. Journal of Pharmacological Sciences, 2008, 106, 144-151.	2.5	12
100	Intravenously Administered Vasodilatory Prostaglandins Increase Retinal and Choroidal Blood Flow in Rats. Journal of Pharmacological Sciences, 2007, 103, 103-112.	2.5	20
101	Vasodilation of Retinal Arteriole Mediated by Corticotropin-Releasing Factor Receptor is Impaired in Streptozotocin-Induced Diabetic Rats. Biological and Pharmaceutical Bulletin, 2007, 30, 985-989.	1.4	5
102	Vasodilator Effects of Fasudil, a Rho-Kinase Inhibitor, on Retinal Arterioles in Stroke-Prone Spontaneously Hypertensive Rats. Journal of Ocular Pharmacology and Therapeutics, 2007, 23, 207-212.	1.4	28
103	Role of capsaicin-sensitive sensory nerves in protease-activated receptor-2-mediated contraction of rat urinary bladder. European Journal of Pharmacology, 2007, 569, 145-148.	3.5	8
104	Stimulation of prostanoid IP and EP2 receptors dilates retinal arterioles and increases retinal and choroidal blood flow in rats. European Journal of Pharmacology, 2007, 570, 135-141.	3.5	60
105	Attenuation of nitric oxide- and prostaglandin-independent vasodilation of retinal arterioles induced by acetylcholine in streptozotocin-treated rats. Vascular Pharmacology, 2007, 46, 153-159.	2.1	52
106	Vasodilator effect of nicorandil on retinal blood vessels in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2007, 375, 323-328.	3.0	23
107	Vasodilator Effects of Adrenomedullin on Retinal Arterioles in Streptozotocin-Induced Diabetic Rats. Journal of Ocular Pharmacology and Therapeutics, 2006, 22, 317-322.	1.4	27
108	Rapid vascular regrowth in tumors after reversal of VEGF inhibition. Journal of Clinical Investigation, 2006, 116, 2610-2621.	8.2	709

#	Article	lF	CITATIONS
109	Involvement of the $\hat{l}^2\hat{l}^3$ subunits of G proteins in the cAMP response induced by stimulation of the histamine H1 receptor. Naunyn-Schmiedeberg's Archives of Pharmacology, 2005, 372, 153-159.	3.0	28
110	Diphenylamine-2-carboxylic acid potentiates the cyclic nucleotides-mediated relaxation of porcine coronary artery: possible involvement of the inhibitory effect on the efflux of cyclic nucleotides. Vascular Pharmacology, 2004, 41, 21-25.	2.1	2
111	Characterization of mexiletine as an antagonist of \hat{l}^2 -adrenoceptor in Chinese hamster ovary cells expressing cloned human \hat{l}^2 -adrenoceptors. Biochemical Pharmacology, 2004, 67, 815-822.	4.4	3
112	Protease-activated receptor-2-mediated contraction of urinary bladder is enhanced in cyclophosphamide-treated rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 369, 212-219.	3.0	16
113	Influence of Receptor Number on the cAMP Response to Forskolin in Chinese Hamster Ovary Cells Transfected with Human .BETA.2-Adrenoceptor. Biological and Pharmaceutical Bulletin, 2004, 27, 239-241.	1.4	5
114	MaxiK channel-triggered negative feedback system is preserved in the urinary bladder smooth muscle from streptozotocin-induced diabetic rats. Journal of Smooth Muscle Research, 2004, 40, 97-109.	1.2	11
115	Role of the M2 muscarinic receptor pathway in lidocaine-induced potentiation of the relaxant response to atrial natriuretic peptide in bovine tracheal smooth muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 367, 76-79.	3.0	6
116	Protease-activated receptor-2-mediated contraction in the rat urinary bladder: the role of urinary bladder mucosa. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 367, 211-213.	3.0	18
117	Possible involvement of Ca2+-independent phospholipase A2 in protease-activated receptor-2-mediated contraction of rat urinary bladder. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 367, 588-591.	3.0	17
118	The role of cholinesterases in rat urinary bladder contractility. Urological Research, 2003, 31, 223-226.	1.5	11
119	Expression of multidrug resistance protein 4 and 5 in the porcine coronary and pulmonary arteries. European Journal of Pharmacology, 2003, 466, 223-224.	3.5	10
120	Augmentation of rat urinary bladder relaxation mediated by \hat{l}^21 -adrenoceptors in experimental diabetes. European Journal of Pharmacology, 2003, 467, 191-195.	3.5	18
121	Relaxant effect of YM976, a novel phosphodiesterase 4 inhibitor, on bovine tracheal smooth muscle. European Journal of Pharmacology, 2003, 470, 57-64.	3.5	7
122	Lidocaine attenuates muscarinic receptor-mediated inhibition of adenylyl cyclase in airway smooth muscle. European Journal of Pharmacology, 2003, 470, 65-71.	3.5	6
123	Accelerated acetylcholine metabolism in the lung after infusion of phenylephrine in dogs. Research Communications in Molecular Pathology and Pharmacology, 2003, 113-114, 201-6.	0.2	0
124	Evidence for the possible involvement of Ca 2+ entry blockade in the relaxation by class I antiarrhythmic drugs in the isolated pig coronary smooth muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 365, 56-66.	3.0	6
125	Relaxation and potentiation of cGMP-mediated response by ibudilast in bovine tracheal smooth muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 366, 262-269.	3.0	8
126	Inhibitory mechanism of BRL37344 on muscarinic receptor-mediated contractions of the rat urinary bladder smooth muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 366, 198-203.	3.0	21

#	Article	IF	CITATIONS
127	Stimulation of muscarinic M 2 receptors inhibits atrial natriuretic peptide-mediated relaxation in bovine tracheal smooth muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 366, 376-379.	3.0	3
128	Mexiletine inhibits pharmacological actions of salbutamol through blockade of \hat{l}^2 2 -adrenoceptors in bovine tracheal smooth muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 364, 409-413.	3.0	2
129	Role of K+ channels in N-acetylprocainamide-induced relaxation of bovine tracheal smooth muscle. European Journal of Pharmacology, 2001, 415, 73-78.	3.5	5
130	Late preconditioning in rat retina: involvement of adenosine and ATP-sensitive K+ channel. European Journal of Pharmacology, 2001, 418, 89-93.	3.5	27
131	Lidocaine potentiates atrial natriuretic peptide-induced relaxation of bovine tracheal smooth muscle. European Journal of Pharmacology, 2001, 425, 129-133.	3.5	1
132	Possible involvement of endothelium-derived hyperpolarizing factor (EDHF) in the depressor responses to platelet activating factor (PAF) in rats. British Journal of Pharmacology, 2000, 131, 1113-1120.	5.4	5
133	Y-27632 potentiates relaxant effects of \hat{l}^2 2-adrenoceptor agonists in bovine tracheal smooth muscle. European Journal of Pharmacology, 2000, 389, 103-106.	3.5	28
134	Involvement of K+ channel in procainamide-induced relaxation of bovine tracheal smooth muscle. European Journal of Pharmacology, 2000, 402, 143-149.	3.5	11
135	Lidocaine potentiates the relaxant effects of cAMP-elevating agents in bovine tracheal smooth muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 361, 605-609.	3.0	10