Dongguo Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1234628/publications.pdf Version: 2024-02-01

<u> Νονεεμο Ιι</u>

#	Article	IF	CITATIONS
1	Durability of anion exchange membrane water electrolyzers. Energy and Environmental Science, 2021, 14, 3393-3419.	15.6	213
2	Elucidating the Role of Hydroxide Electrolyte on Anion-Exchange-Membrane Water Electrolyzer Performance. Journal of the Electrochemical Society, 2021, 168, 054522.	1.3	54
3	Performance and durability of anion exchange membrane water electrolyzers using down-selected polymer electrolytes. Journal of Materials Chemistry A, 2021, 9, 22670-22683.	5.2	34
4	Engineered Thin Diffusion Layers for Anion-Exchange Membrane Electrolyzer Cells with Outstanding Performance. ACS Applied Materials & Interfaces, 2021, 13, 50957-50964.	4.0	19
5	Unusually High Concentration of Alkyl Ammonium Hydroxide in the Cation–Hydroxide–Water Coadsorbed Layer on Pt. ACS Applied Materials & Interfaces, 2020, 12, 1825-1831.	4.0	15
6	Eliminating dissolution of platinum-based electrocatalysts at the atomic scale. Nature Materials, 2020, 19, 1207-1214.	13.3	127
7	Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nature Energy, 2020, 5, 378-385.	19.8	372
8	On the origin of permanent performance loss of anion exchange membrane fuel cells: Electrochemical oxidation of phenyl group. Journal of Power Sources, 2019, 436, 226866.	4.0	69
9	Phenyl Oxidation Impacts the Durability of Alkaline Membrane Water Electrolyzer. ACS Applied Materials & Interfaces, 2019, 11, 9696-9701.	4.0	79
10	Impact of ionomer adsorption on alkaline hydrogen oxidation activity and fuel cell performance. Current Opinion in Electrochemistry, 2018, 12, 189-195.	2.5	55
11	Binary Transition-Metal Oxide Hollow Nanoparticles for Oxygen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2018, 10, 24715-24724.	4.0	60
12	Mechanism of Zn Insertion into Nanostructured δ-MnO ₂ : A Nonaqueous Rechargeable Zn Metal Battery. Chemistry of Materials, 2017, 29, 4874-4884.	3.2	225
13	Best Practices and Testing Protocols for Benchmarking ORR Activities of Fuel Cell Electrocatalysts Using Rotating Disk Electrode. Electrocatalysis, 2017, 8, 366-374.	1.5	121
14	High-Performance Rh ₂ P Electrocatalyst for Efficient Water Splitting. Journal of the American Chemical Society, 2017, 139, 5494-5502.	6.6	343
15	Control of Architecture in Rhombic Dodecahedral Pt–Ni Nanoframe Electrocatalysts. Journal of the American Chemical Society, 2017, 139, 11678-11681.	6.6	166
16	Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 509-532.	3.3	46
17	Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction. Nano Energy, 2016, 29, 149-165.	8.2	177
18	Controlling core/shell Au/FePt nanoparticle electrocatalysis via changing the core size and shell thickness. Nanoscale, 2016, 8, 2626-2631.	2.8	36

Dongguo Li

#	Article	IF	CITATIONS
19	When Small is Big: The Role of Impurities in Electrocatalysis. Topics in Catalysis, 2015, 58, 1174-1180.	1.3	26
20	Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing. Nature Communications, 2015, 6, 8925.	5.8	159
21	Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science, 2014, 343, 1339-1343.	6.0	2,376
22	Core/Shell Au/CuPt Nanoparticles and Their Dual Electrocatalysis for Both Reduction and Oxidation Reactions. Journal of the American Chemical Society, 2014, 136, 5745-5749.	6.6	255
23	Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case. Energy and Environmental Science, 2014, 7, 4061-4069.	15.6	205
24	Multimetallic Core/Interlayer/Shell Nanostructures as Advanced Electrocatalysts. Nano Letters, 2014, 14, 6361-6367.	4.5	146
25	FePt and CoPt Nanowires as Efficient Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 3465-3468.	7.2	389
26	Surfactant Removal for Colloidal Nanoparticles from Solution Synthesis: The Effect on Catalytic Performance. ACS Catalysis, 2012, 2, 1358-1362.	5.5	426
27	Rational Development of Ternary Alloy Electrocatalysts. Journal of Physical Chemistry Letters, 2012, 3, 1668-1673.	2.1	130
28	Unique Electrochemical Adsorption Properties of Ptâ€5kin Surfaces. Angewandte Chemie - International Edition, 2012, 51, 3139-3142.	7.2	264
29	Synthesis of Pt ₃ Sn Alloy Nanoparticles and Their Catalysis for Electro-Oxidation of CO and Methanol. ACS Catalysis, 2011, 1, 1719-1723.	5.5	98
30	Design and Synthesis of Bimetallic Electrocatalyst with Multilayered Pt-Skin Surfaces. Journal of the American Chemical Society, 2011, 133, 14396-14403.	6.6	541
31	Surfactant-Induced Postsynthetic Modulation of Pd Nanoparticle Crystallinity. Nano Letters, 2011, 11, 1614-1617.	4.5	98
32	Synthesis of Homogeneous Pt-Bimetallic Nanoparticles as Highly Efficient Electrocatalysts. ACS Catalysis, 2011, 1, 1355-1359.	5.5	124
33	Pt-based composite nanoparticles for magnetic, catalytic, and biomedical applications. Journal of Materials Chemistry, 2011, 21, 12579.	6.7	47
34	Correlation Between Surface Chemistry and Electrocatalytic Properties of Monodisperse Pt _{<i>x</i>} Ni _{1â€<i>x</i>} Nanoparticles. Advanced Functional Materials, 2011, 21, 147-152.	7.8	218
35	A Simple Ethylene Glycol Reduction Route to the Fabrication of Metallic Nickel Nanoplatelets with Hexagonal and Triangular Shapes. Chemistry Letters, 2008, 37, 148-149.	0.7	5
36	A Facile Non-hydrothermal Fabrication of Uniform α-MoO3 Nanowires in High Yield. Chemistry Letters, 2008, 37, 336-337.	0.7	18

Dongguo Li

#	Article	IF	CITATIONS
37	Nickel-promoted Fabrication of Multicreviced Carbon Nanotubes with Improved Electrochemical Capacitance. Chemistry Letters, 2007, 36, 1072-1073.	0.7	0
38	A Simple Method to the Fabrication of Rectangular Co3O4Nanosheets. Chemistry Letters, 2007, 36, 146-147.	0.7	7
39	A Facile Chemical Reduction Route to the Preparation of Single-crystalline Iron Nanocubes. Chemistry Letters, 2007, 36, 722-723.	0.7	14
40	Complexant-assisted Fabrication of Flowery Assembly of Hexagonal Close-packed Cobalt Nanoplatelets. Chemistry Letters, 2007, 36, 908-909.	0.7	16