
Patrik Rorsman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1234276/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 2004, 432, 226-230.	13.7	1,932
2	The Obesity-Associated <i>FTO</i> Gene Encodes a 2-Oxoglutarate-Dependent Nucleic Acid Demethylase. Science, 2007, 318, 1469-1472.	6.0	1,305
3	Electrophysiology of the pancreatic β-cell. Progress in Biophysics and Molecular Biology, 1989, 54, 87-143.	1.4	984
4	Diabetes Mellitus and the \hat{I}^2 Cell: The Last Ten Years. Cell, 2012, 148, 1160-1171.	13.5	761
5	<i>miR-375</i> maintains normal pancreatic α- and β-cell mass. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5813-5818.	3.3	710
6	Insulin granule dynamics in pancreatic beta cells. Diabetologia, 2003, 46, 1029-1045.	2.9	696
7	Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic ?-cells. Pflugers Archiv European Journal of Physiology, 1986, 407, 493-499.	1.3	545
8	Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiological Reviews, 2018, 98, 117-214.	13.1	497
9	Regulation of Insulin Secretion in Human Pancreatic Islets. Annual Review of Physiology, 2013, 75, 155-179.	5.6	496
10	Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature, 1989, 341, 233-236.	13.7	453
11	Calcium-independent potentiation of insulin release by cyclic AMP in single β-cells. Nature, 1993, 363, 356-358.	13.7	365
12	Voltage-Gated Ion Channels in Human Pancreatic β-Cells: Electrophysiological Characterization and Role in Insulin Secretion. Diabetes, 2008, 57, 1618-1628.	0.3	362
13	Glucose dependent K+-channels in pancreatic?-cells are regulated by intracellular ATP. Pflugers Archiv European Journal of Physiology, 1985, 405, 305-309.	1.3	357
14	Calcium and delayed potassium currents in mouse pancreatic betaâ€cells under voltageâ€clamp conditions Journal of Physiology, 1986, 374, 531-550.	1.3	344
15	Deletion of the G Protein-Coupled Receptor 30 Impairs Glucose Tolerance, Reduces Bone Growth, Increases Blood Pressure, and Eliminates Estradiol-Stimulated Insulin Release in Female Mice. Endocrinology, 2009, 150, 687-698.	1.4	343
16	Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Research, 2005, 15, 1388-1392.	2.4	337
17	Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes, 1998, 47, 345-351.	0.3	297
18	Glucose-sensing mechanisms in pancreatic β-cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 2211-2225.	1.8	281

#	Article	IF	CITATIONS
19	The voltage sensitive Lc-type Ca2+ channel is functionally coupled to the exocytotic machinery. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 248-253.	3.3	273
20	Co-localization of L-type Ca2+ channels and insulin-containing secretory granules and its significance for the initiation of exocytosis in mouse pancreatic B-cells EMBO Journal, 1995, 14, 50-57.	3.5	270
21	Overexpression of Alpha2A-Adrenergic Receptors Contributes to Type 2 Diabetes. Science, 2010, 327, 217-220.	6.0	266
22	Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic B-cells. Journal of Physiology, 1997, 502, 105-118.	1.3	264
23	MicroRNA-7a regulates pancreatic \hat{I}^2 cell function. Journal of Clinical Investigation, 2014, 124, 2722-2735.	3.9	251
24	Exocytosis elicited by action potentials and voltageâ€clamp calcium currents in individual mouse pancreatic Bâ€cells Journal of Physiology, 1993, 472, 665-688.	1.3	250
25	The pancreatic beta-cell as a fuel sensor: an electrophysiologist's viewpoint. Diabetologia, 1997, 40, 487-495.	2.9	246
26	Glucose Inhibition of Glucagon Secretion From Rat Â-Cells Is Mediated by GABA Released From Neighboring Â-Cells. Diabetes, 2004, 53, 1038-1045.	0.3	246
27	Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells. Pflugers Archiv European Journal of Physiology, 2002, 444, 43-51.	1.3	245
28	Stimulus-secretion coupling in pancreatic \hat{I}^2 cells. Journal of Cellular Biochemistry, 1994, 55, 54-65.	1.2	234
29	SUR1 Regulates PKA-independent cAMP-induced Granule Priming in Mouse Pancreatic B-cells. Journal of General Physiology, 2003, 121, 181-197.	0.9	231
30	Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide 1. Pflugers Archiv European Journal of Physiology, 1998, 435, 583-594.	1.3	227
31	GLP-1 Inhibits and Adrenaline Stimulates Glucagon Release by Differential Modulation of N- and L-Type Ca2+ Channel-Dependent Exocytosis. Cell Metabolism, 2010, 11, 543-553.	7.2	225
32	Fast Exocytosis with Few Ca2+ Channels in Insulin-Secreting Mouse Pancreatic B Cells. Biophysical Journal, 2001, 81, 3308-3323.	0.2	223
33	Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic \hat{I}^2 -cells. Nature Communications, 2019, 10, 2474.	5.8	223
34	KATP channels and islet hormone secretion: new insights and controversies. Nature Reviews Endocrinology, 2013, 9, 660-669.	4.3	221
35	Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nature Communications, 2014, 5, 4639.	5.8	220
36	Regulation of PKD by the MAPK p38δin Insulin Secretion and Glucose Homeostasis. Cell, 2009, 136, 235-248.	13.5	215

#	Article	IF	CITATIONS
37	Regulation of glucagon release in mouse α ells by K ATP channels and inactivation of TTXâ€sensitive Na + channels. Journal of Physiology, 2000, 528, 509-520.	1.3	211
38	Impaired insulin secretion and glucose tolerance in cell-selective CaV1.2 Ca2+ channel null mice. EMBO Journal, 2003, 22, 3844-3854.	3.5	205
39	Voltage-gated and resting membrane currents recorded from B-cells in intact mouse pancreatic islets. Journal of Physiology, 1999, 521, 717-728.	1.3	204
40	Reduced Insulin Exocytosis in Human Pancreatic β-Cells With Gene Variants Linked to Type 2 Diabetes. Diabetes, 2012, 61, 1726-1733.	0.3	204
41	A KATP Channel-Dependent Pathway within α Cells Regulates Glucagon Release from Both Rodent and Human Islets of Langerhans. PLoS Biology, 2007, 5, e143.	2.6	203
42	A Subset of 50 Secretory Granules in Close Contact With L-Type Ca2+ Channels Accounts for First-Phase Insulin Secretion in Mouse Â-Cells. Diabetes, 2002, 51, S74-S82.	0.3	196
43	Rapid ATP-Dependent Priming of Secretory Granules Precedes Ca2+-Induced Exocytosis in Mouse Pancreatic B-Cells. Journal of Physiology, 1997, 503, 399-412.	1.3	195
44	Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells. Diabetes, 2000, 49, 1500-1510.	0.3	195
45	Regulation of calcium in pancreatic \hat{I}_{\pm} - and \hat{I}^2 -cells in health and disease. Cell Calcium, 2012, 51, 300-308.	1.1	195
46	PKC-Dependent Stimulation of Exocytosis by Sulfonylureas in Pancreatic beta Cells. Science, 1996, 271, 813-815.	6.0	194
47	Activation of protein kinases and inhibition of protein phosphatases play a central role in the regulation of exocytosis in mouse pancreatic beta cells Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 4343-4347.	3.3	192
48	Î ³ -Aminobutyric Acid (GABA) Is an Autocrine Excitatory Transmitter in Human Pancreatic Î ² -Cells. Diabetes, 2010, 59, 1694-1701.	0.3	190
49	Increased activity of L-type Ca2+ channels exposed to serum from patients with type I diabetes. Science, 1993, 261, 86-90.	6.0	186
50	Glucagon-Like Peptide 1(7-36) Amide Stimulates Exocytosis in Human Pancreatic β-Cells by Both Proximal and Distal Regulatory Steps in Stimulus-Secretion Coupling. Diabetes, 1998, 47, 57-65.	0.3	179
51	Role of KATP Channels in Glucose-Regulated Glucagon Secretion and Impaired Counterregulation in Type 2 Diabetes. Cell Metabolism, 2013, 18, 871-882.	7.2	179
52	Delay between Fusion Pore Opening and Peptide Release from Large Dense-Core Vesicles in Neuroendocrine Cells. Neuron, 2002, 33, 287-299.	3.8	176
53	The Cell Physiology of Biphasic Insulin Secretion. Physiology, 2000, 15, 72-77.	1.6	175
54	An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans. , 2013, 139, 359-391.		168

#	Article	IF	CITATIONS
55	Isoform-specific regulation of mood behavior and pancreatic β cell and cardiovascular function by L-type Ca2+ channels. Journal of Clinical Investigation, 2004, 113, 1430-1439.	3.9	168
56	Neurotransmitter-Induced Inhibition of Exocytosis in Insulin-Secreting \hat{I}^2 Cells by Activation of Calcineurin. Neuron, 1996, 17, 513-522.	3.8	166
57	Inhibition of ATP-regulated K+ channels precedes depolarization-induced increase in cytoplasmic free Ca2+ concentration in pancreatic beta-cells Journal of Biological Chemistry, 1987, 262, 5448-5454.	1.6	165
58	The somatostatin-secreting pancreatic δ-cell in health and disease. Nature Reviews Endocrinology, 2018, 14, 404-414.	4.3	164
59	Priming of insulin granules for exocytosis by granular Clâ^' uptake and acidification. Journal of Cell Science, 2001, 114, 2145-2154.	1.2	163
60	Novel aspects of the molecular mechanisms controlling insulin secretion. Journal of Physiology, 2008, 586, 3313-3324.	1.3	162
61	Regulation of glucagon secretion by glucose: paracrine, intrinsic or both?. Diabetes, Obesity and Metabolism, 2011, 13, 95-105.	2.2	160
62	Simultaneous recordings of glucose dependent electrical activity and ATP-regulated K+ -currents in isolated mouse pancreatic β-cells. FEBS Letters, 1990, 261, 187-190.	1.3	159
63	Adrenaline Stimulates Glucagon Secretion in Pancreatic A-Cells by Increasing the Ca2+ Current and the Number of Granules Close to the L-Type Ca2+ Channels. Journal of General Physiology, 1997, 110, 217-228.	0.9	159
64	CaV2.3 calcium channels control second-phase insulin release. Journal of Clinical Investigation, 2005, 115, 146-154.	3.9	153
65	Modulation of dihydropyridine-sensitive Ca2+ channels by glucose metabolism in mouse pancreatic β -cells. Nature, 1989, 342, 550-553.	13.7	149
66	GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. Journal of Clinical Investigation, 2015, 125, 4714-4728.	3.9	145
67	ATP-Sensitive K+ Channel-Dependent Regulation of Glucagon Release and Electrical Activity by Glucose in Wild-Type and SUR1-/- Mouse Â-Cells. Diabetes, 2004, 53, S181-S189.	0.3	142
68	Priming of insulin granules for exocytosis by granular Cl(-) uptake and acidification. Journal of Cell Science, 2001, 114, 2145-54.	1.2	138
69	Capacitance measurements of exocytosis in mouse pancreatic α-, β- and δ-cells within intact islets of Langerhans. Journal of Physiology, 2004, 556, 711-726.	1.3	137
70	Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nature Communications, 2017, 8, 14733.	5.8	136
71	Inhibition of ATP-regulated K+ channels precedes depolarization-induced increase in cytoplasmic free Ca2+ concentration in pancreatic beta-cells. Journal of Biological Chemistry, 1987, 262, 5448-54.	1.6	135
72	Inositol trisphosphate-dependent periodic activation of a Ca2+-activated K+ conductance in glucose-stimulated pancreatic β-cells. Nature, 1991, 353, 849-852.	13.7	134

#	Article	IF	CITATIONS
73	Activation by adrenaline of a low-conductance G protein-dependent K+ channel in mouse pancreatic B cells. Nature, 1991, 349, 77-79.	13.7	133
74	Activation of Ca2+-Dependent K+ Channels Contributes to Rhythmic Firing of Action Potentials in Mouse Pancreatic Î ² Cells. Journal of General Physiology, 1999, 114, 759-770.	0.9	131
75	Chronic Palmitate Exposure Inhibits Insulin Secretion by Dissociation of Ca2+ Channels from Secretory Granules. Cell Metabolism, 2009, 10, 455-465.	7.2	131
76	Glucagon-Like Peptide I Increases Cytoplasmic Calcium in Insulin-Secreting βTC3-Cells by Enhancement of Intracellular Calcium Mobilization. Diabetes, 1995, 44, 767-774.	0.3	130
77	Patchâ€clamp characterisation of somatostatinâ€secreting δâ€cells in intact mouse pancreatic islets. Journal of Physiology, 2000, 528, 497-507.	1.3	130
78	ATP-sensitive K+ channels: a link between B-cell metabolism and insulin secretion. Biochemical Society Transactions, 1990, 18, 109-111.	1.6	129
79	Selective nucleotide-release from dense-core granules in insulin-secreting cells. Journal of Cell Science, 2005, 118, 4271-4282.	1.2	129
80	Glutamate Acts as a Key Signal Linking Glucose Metabolism to Incretin/cAMP Action to Amplify Insulin Secretion. Cell Reports, 2014, 9, 661-673.	2.9	128
81	Release of small transmitters through kiss-and-run fusion pores in rat pancreatic Î ² cells. Cell Metabolism, 2006, 4, 283-290.	7.2	127
82	Glucagon Stimulates Exocytosis in Mouse and Rat Pancreatic α-Cells by Binding to Glucagon Receptors. Molecular Endocrinology, 2005, 19, 198-212.	3.7	121
83	SSTR2 is the functionally dominant somatostatin receptor in human pancreatic β- and α-cells. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E1107-E1116.	1.8	119
84	Suppression of Insulin Release by Galanin and Somatostatin Is Meditated by a G-protein. Journal of Biological Chemistry, 1989, 264, 973-980.	1.6	119
85	Dual effects of glucose on the cytosolic Ca2+ activity of mouse pancreatic β-cells. FEBS Letters, 1984, 170, 196-200.	1.3	118
86	Regulated Exocytosis of GABA-containing Synaptic-like Microvesicles in Pancreatic β-cells. Journal of General Physiology, 2004, 123, 191-204.	0.9	118
87	δâ€cells and βâ€cells are electrically coupled and regulate αâ€cell activity via somatostatin. Journal of Physiology, 2018, 596, 197-215.	1.3	117
88	Insulin inhibits glucagon release by SGLT2-induced stimulation of somatostatin secretion. Nature Communications, 2019, 10, 139.	5.8	117
89	Failure of Transplanted Bone Marrow Cells to Adopt a Pancreatic Â-Cell Fate. Diabetes, 2006, 55, 290-296.	0.3	112
90	Co-localization of L-type Ca2+ channels and insulin-containing secretory granules and its significance for the initiation of exocytosis in mouse pancreatic B-cells. EMBO Journal, 1995, 14, 50-7.	3.5	112

#	Article	IF	CITATIONS
91	Membrane Potential-Dependent Inactivation of Voltage-Gated Ion Channels in α-Cells Inhibits Glucagon Secretion From Human Islets. Diabetes, 2010, 59, 2198-2208.	0.3	110
92	A dominant mutation in Snap25 causes impaired vesicle trafficking, sensorimotor gating, and ataxia in the blind-drunk mouse. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2431-2436.	3.3	109
93	Failure of glucose to elicit a normal secretory response in fetal pancreatic beta cells results from glucose insensitivity of the ATP-regulated K+ channels Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 4505-4509.	3.3	108
94	Glucagon secretion from pancreatic \hat{l} ±-cells. Upsala Journal of Medical Sciences, 2016, 121, 113-119.	0.4	108
95	Voltage-activated currents in guinea pig pancreatic alpha 2 cells. Evidence for Ca2+-dependent action potentials Journal of General Physiology, 1988, 91, 223-242.	0.9	105
96	Quantification of mRNA in single cells and modelling of RT-qPCR induced noise. BMC Molecular Biology, 2008, 9, 63.	3.0	104
97	Suppression of insulin release by galanin and somatostatin is mediated by a C-protein. An effect involving repolarization and reduction in cytoplasmic free Ca2+ concentration. Journal of Biological Chemistry, 1989, 264, 973-80.	1.6	104
98	Hormone-sensitive lipase, the rate-limiting enzyme in triglyceride hydrolysis, is expressed and active in beta-cells. Diabetes, 1999, 48, 228-232.	0.3	102
99	Single Ca channel currents in mouse pancreatic B-cells. Pflugers Archiv European Journal of Physiology, 1988, 412, 597-603.	1.3	101
100	Somatostatin inhibits exocytosis in rat pancreatic αâ€cells by G i2 â€dependent activation of calcineurin and depriming of secretory granules. Journal of Physiology, 2001, 535, 519-532.	1.3	100
101	Clucagon-Like Peptide I and Clucose-Dependent Insulinotropic Polypeptide Stimulate Ca2+-Induced Secretion in Rat α-Cells by a Protein Kinase A–Mediated Mechanism. Diabetes, 1997, 46, 792-800.	0.3	99
102	Phosphatidylinositol 4-kinase serves as a metabolic sensor and regulates priming of secretory granules in pancreatic cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5187-5192.	3.3	96
103	Loss of ZnT8 function protects against diabetes by enhanced insulin secretion. Nature Genetics, 2019, 51, 1596-1606.	9.4	96
104	R-type Ca2+-channel-evoked CICR regulates glucose-induced somatostatin secretion. Nature Cell Biology, 2007, 9, 453-460.	4.6	95
105	Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic β cells recapitulates neonatal diabetes. Journal of Clinical Investigation, 2009, 119, 80-90.	3.9	95
106	Corelease and Differential Exit via the Fusion Pore of GABA, Serotonin, and ATP from LDCV in Rat Pancreatic β Cells. Journal of General Physiology, 2007, 129, 221-231.	0.9	94
107	Uromodulin mutations causing familial juvenile hyperuricaemic nephropathy lead to protein maturation defects and retention in the endoplasmic reticulum. Human Molecular Genetics, 2009, 18, 2963-2974.	1.4	94
108	Cooling inhibits exocytosis in single mouse pancreatic Bâ€cells by suppression of granule mobilization Journal of Physiology, 1996, 494, 41-52.	1.3	92

#	Article	IF	CITATIONS
109	Multisite regulation of insulin secretion by cAMP-increasing agonists: evidence that glucagon-like peptide 1 and glucagon act via distinct receptors. Pflugers Archiv European Journal of Physiology, 1997, 434, 515-524.	1.3	92
110	Type 2 diabetes mellitus: not quite exciting enough?. Human Molecular Genetics, 2004, 13, 21R-31.	1.4	90
111	Hyperglycaemia induces metabolic dysfunction and glycogen accumulation in pancreatic β-cells. Nature Communications, 2016, 7, 13496.	5.8	90
112	Delayed rectifying and calcium-activated K+ channels and their significance for action potential repolarization in mouse pancreatic beta-cells Journal of General Physiology, 1990, 95, 1041-1059.	0.9	88
113	pVHL is a regulator of glucose metabolism and insulin secretion in pancreatic β cells. Genes and Development, 2008, 22, 3135-3146.	2.7	88
114	The insulinogenic effect of whey protein is partially mediated by a direct effect of amino acids and GIP on β-cells. Nutrition and Metabolism, 2012, 9, 48.	1.3	88
115	Block of ATP-regulated and Ca2(+)-activated K+ channels in mouse pancreatic beta-cells by external tetraethylammonium and quinine Journal of Physiology, 1990, 423, 327-342.	1.3	87
116	Glucagon-Like Peptide-1: Regulation of Insulin Secretion and Therapeutic Potential. Basic and Clinical Pharmacology and Toxicology, 2004, 95, 252-262.	1.2	87
117	Synaptotagminâ€7 is a principal Ca ²⁺ sensor for Ca ²⁺ â€induced glucagon exocytosis in pancreas. Journal of Physiology, 2009, 587, 1169-1178.	1.3	87
118	Muscle Dysfunction Caused by a K _{ATP} Channel Mutation in Neonatal Diabetes Is Neuronal in Origin. Science, 2010, 329, 458-461.	6.0	87
119	Electrophysiology of pancreatic β-cells in intact mouse islets of Langerhans. Progress in Biophysics and Molecular Biology, 2011, 107, 224-235.	1.4	87
120	KATP-channels and glucose-regulated glucagon secretion. Trends in Endocrinology and Metabolism, 2008, 19, 277-284.	3.1	86
121	CaM kinase II-dependent mobilization of secretory granules underlies acetylcholine-induced stimulation of exocytosis in mouse pancreatic B-cells. Journal of Physiology, 1999, 518, 745-759.	1.3	85
122	Palmitate Stimulation of Glucagon Secretion in Mouse Pancreatic Â-Cells Results From Activation of L-Type Calcium Channels and Elevation of Cytoplasmic Calcium. Diabetes, 2004, 53, 2836-2843.	0.3	85
123	Long-Term Exposure to Glucose and Lipids Inhibits Glucose-Induced Insulin Secretion Downstream of Granule Fusion With Plasma Membrane. Diabetes, 2007, 56, 1888-1897.	0.3	83
124	Autocrine regulation of insulin secretion. Diabetes, Obesity and Metabolism, 2012, 14, 143-151.	2.2	83
125	Somatostatin release, electrical activity, membrane currents and exocytosis in human pancreatic delta cells. Diabetologia, 2009, 52, 1566-1578.	2.9	81
126	CaV2.3 calcium channels control second-phase insulin release. Journal of Clinical Investigation, 2005, 115, 146-154.	3.9	81

#	Article	IF	CITATIONS
127	Stimulation of the KATP channel by ADP and diazoxide requires nucleotide hydrolysis in mouse pancreatic betaâ€cells Journal of Physiology, 1993, 463, 349-365.	1.3	80
128	Endocytosis of secretory granules in mouse pancreatic betaâ€cells evoked by transient elevation of cytosolic calcium Journal of Physiology, 1996, 493, 755-767.	1.3	79
129	Cellular function in multicellular system for hormone-secretion: electrophysiological aspect of studies on $\hat{1}_{\pm}$, $\hat{1}_{\pm}$ and $\hat{1}_{\pm}$ cells of the pancreatic islet. Neuroscience Research, 2002, 42, 79-90.	1.0	79
130	Glucoseâ€dependent regulation of rhythmic action potential firing in pancreatic β ells by kATP hannel modulation. Journal of Physiology, 2002, 545, 501-507.	1.3	79
131	Palmitate increases L-type Ca2+currents and the size of the readily releasable granule pool in mouse pancreatic β-cells. Journal of Physiology, 2004, 557, 935-948.	1.3	79
132	The Effects of TAK-875, a Selective G Protein-Coupled Receptor 40/Free Fatty Acid 1 Agonist, on Insulin and Glucagon Secretion in Isolated Rat and Human Islets. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 483-489.	1.3	79
133	Ca2+-induced Ca2+release in insulin-secreting cells. FEBS Letters, 1992, 296, 287-291.	1.3	78
134	Na ⁺ current properties in islet α―and βâ€cells reflect cellâ€specific <i>Scn3a</i> and <i>Scn9a</i> expression. Journal of Physiology, 2014, 592, 4677-4696.	1.3	78
135	ATP-regulated potassium channels and voltage-gated calcium channels in pancreatic alpha and beta cells: similar functions but reciprocal effects on secretion. Diabetologia, 2014, 57, 1749-1761.	2.9	74
136	RFX6 Regulates Insulin Secretion by Modulating Ca2+ Homeostasis in Human \hat{l}^2 Cells. Cell Reports, 2014, 9, 2206-2218.	2.9	73
137	Characterisation of sulphonylurea and ATP-regulated K+ channels in rat pancreatic A-cells. Pflugers Archiv European Journal of Physiology, 1999, 438, 428-436.	1.3	72
138	α-cell glucokinase suppresses glucose-regulated glucagon secretion. Nature Communications, 2018, 9, 546.	5.8	72
139	GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca ²⁺ channels. Physiological Reports, 2018, 6, e13852.	0.7	71
140	CPT1a-Dependent Long-Chain Fatty Acid Oxidation Contributes to Maintaining Glucagon Secretion from Pancreatic Islets. Cell Reports, 2018, 23, 3300-3311.	2.9	71
141	PYY-Dependent Restoration of Impaired Insulin and Clucagon Secretion in Type 2 Diabetes following Roux-En-Y Gastric Bypass Surgery. Cell Reports, 2016, 15, 944-950.	2.9	70
142	Ca2+ channel clustering with insulin-containing granules is disturbed in type 2 diabetes. Journal of Clinical Investigation, 2017, 127, 2353-2364.	3.9	70
143	The First γ-Carboxyglutamic Acid-containing Contryphan. Journal of Biological Chemistry, 2004, 279, 32453-32463.	1.6	69
144	Cell coupling in mouse pancreatic β-cells measured in intact islets of Langerhans. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 3503-3523.	1.6	69

#	Article	IF	CITATIONS
145	The stimulatory action of tolbutamide on Ca2+-dependent exocytosis in pancreatic cells is mediated by a 65-kDa mdr-like P-glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5539-5544.	3.3	68
146	Oscillations, Intercellular Coupling, and Insulin Secretion in Pancreatic β Cells. PLoS Biology, 2006, 4, e49.	2.6	68
147	GABABreceptor activation inhibits exocytosis in rat pancreatic β-cells by G-protein-dependent activation of calcineurin. Journal of Physiology, 2004, 559, 397-409.	1.3	67
148	AP2σ Mutations Impair Calcium-Sensing Receptor Trafficking and Signaling, and Show an Endosomal Pathway to Spatially Direct G-Protein Selectivity. Cell Reports, 2018, 22, 1054-1066.	2.9	66
149	CAPS1 and CAPS2 Regulate Stability and Recruitment of Insulin Granules in Mouse Pancreatic \hat{l}^2 Cells. Cell Metabolism, 2008, 7, 57-67.	7.2	65
150	Synaptotagmin-7 phosphorylation mediates GLP-1–dependent potentiation of insulin secretion from β-cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9996-10001.	3.3	65
151	PYY plays a key role in the resolution of diabetes following bariatric surgery in humans. EBioMedicine, 2019, 40, 67-76.	2.7	65
152	Defective regulation of the cytosolic Ca2+ activity in parathyroid cells from patients with hyperparathyroidism. Bioscience Reports, 1984, 4, 909-915.	1.1	64
153	Effects of external tetraethylammonium ions and quinine on delayed rectifying K+ channels in mouse pancreatic beta-cells Journal of Physiology, 1990, 423, 311-325.	1.3	64
154	Ca(2+)―and GTPâ€dependent exocytosis in mouse pancreatic betaâ€cells involves both common and distinct steps Journal of Physiology, 1996, 496, 255-264.	1.3	64
155	Extracellular ATP increases cytoplasmic free Ca2+ concentration in clonal insulin-producing RINm5F cells. A mechanism involving direct interaction with both release and refilling of the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. Biochemical Journal, 1990, 265, 203-211.	1.7	63
156	Characterisation of sulphonylurea and ATP-regulated K + channels in rat pancreatic A-cells. Pflugers Archiv European Journal of Physiology, 1999, 438, 428-436.	1.3	63
157	Calcium increases endocytotic vesicle size and accelerates membrane fission in insulin-secreting INS-1 cells. Journal of Cell Science, 2005, 118, 5911-5920.	1.2	63
158	Regulated Exocytosis and Kiss-and-Run of Synaptic-Like Microvesicles in INS-1 and Primary Rat Â-Cells. Diabetes, 2005, 54, 736-743.	0.3	63
159	Progression of Diet-Induced Diabetes in C57BL6J Mice Involves Functional Dissociation of Ca2+ Channels From Secretory Vesicles. Diabetes, 2010, 59, 1192-1201.	0.3	63
160	Inhibition of glucose-stimulated insulin release by alpha 2-adrenoceptor activation is parallelled by both a repolarization and a reduction in cytoplasmic free Ca2+ concentration Journal of Biological Chemistry, 1988, 263, 1855-1860.	1.6	62
161	Adrenaline Stimulates Glucagon Secretion by Tpc2-Dependent Ca2+ Mobilization From Acidic Stores in Pancreatic α-Cells. Diabetes, 2018, 67, 1128-1139.	0.3	61
162	Defective Secretion of Islet Hormones in Chromogranin-B Deficient Mice. PLoS ONE, 2010, 5, e8936.	1.1	61

#	Article	IF	CITATIONS
163	Galanin and the endocrine pancreas. FEBS Letters, 1988, 229, 233-237.	1.3	59
164	Stimulation of cloned human glucagon-like peptide 1 receptor expressed in HEK 293 cells induces cAMP-dependent activation of calcium-induced calcium release. FEBS Letters, 1995, 373, 182-186.	1.3	59
165	Type 2 diabetes risk alleles in PAM impact insulin release from human pancreatic β-cells. Nature Genetics, 2018, 50, 1122-1131.	9.4	59
166	Type 2 Diabetes Susceptibility Gene <i>TCF7L2</i> and Its Role in β-Cell Function. Diabetes, 2009, 58, 800-802.	0.3	58
167	Fumarate Hydratase Deletion in Pancreatic β Cells Leads to Progressive Diabetes. Cell Reports, 2017, 20, 3135-3148.	2.9	57
168	Dysregulation of Glucagon Secretion by Hyperglycemia-Induced Sodium-Dependent Reduction of ATP Production. Cell Metabolism, 2019, 29, 430-442.e4.	7.2	57
169	CLC-5 and KIF3B interact to facilitate CLC-5 plasma membrane expression, endocytosis, and microtubular transport: relevance to pathophysiology of Dent's disease. American Journal of Physiology - Renal Physiology, 2010, 298, F365-F380.	1.3	56
170	Inhibition of glucose-stimulated insulin release by alpha 2-adrenoceptor activation is parallelled by both a repolarization and a reduction in cytoplasmic free Ca2+ concentration. Journal of Biological Chemistry, 1988, 263, 1855-60.	1.6	56
171	Co-localisation of the Kir6.2/SUR1 channel complex with glucagon-like peptide-1 and glucose-dependent insulinotrophic polypeptide expression in human ileal cells and implications for glycaemic control in new onset type 1 diabetes. European Journal of Endocrinology, 2007, 156, 663-671.	1.9	55
172	Increased Expression of the Diabetes Gene <i>SOX4</i> Reduces Insulin Secretion by Impaired Fusion Pore Expansion. Diabetes, 2016, 65, 1952-1961.	0.3	55
173	Cytoplasmic calcium transients due to single action potentials and voltage-clamp depolarizations in mouse pancreatic B-cells EMBO Journal, 1992, 11, 2877-2884.	3.5	54
174	Molecular Defects in Insulin Secretion in Type-2 Diabetes. Reviews in Endocrine and Metabolic Disorders, 2004, 5, 135-142.	2.6	54
175	A method for the generation of human stem cell-derived alpha cells. Nature Communications, 2020, 11, 2241.	5.8	54
176	The Ins and Outs of Secretion from Pancreatic Î ² -Cells: Control of Single-Vesicle Exo- and Endocytosis. Physiology, 2007, 22, 113-121.	1.6	52
177	Reduction of the cytosolic calcium activity in clonal insulin-releasing cells exposed to glucose. Bioscience Reports, 1983, 3, 939-946.	1.1	51
178	Cyclic AMP potentiates glucoseâ€induced insulin release from mouse pancreatic islets without increasing cytosolic free Ca2. Acta Physiologica Scandinavica, 1985, 125, 639-647.	2.3	51
179	Voltage-activated Na+ currents and their suppression by phorbol ester in clonal insulin-producing RINm5F cells. American Journal of Physiology - Cell Physiology, 1986, 251, C912-C919.	2.1	51
180	Separate processes mediate nucleotide-induced inhibition and stimulation of the ATP-regulated K + -channels in mouse pancreatic β-cells. Proceedings of the Royal Society B: Biological Sciences, 1991, 243, 139-144.	1.2	51

#	Article	IF	CITATIONS
181	Sulfonylurea-Mediated Stimulation of Insulin Exocytosis via an ATP-Sensitive K+ Channel-Independent Action. Diabetes, 2002, 51, S33-S36.	0.3	51
182	Kiss-and-run exocytosis and fusion pores of secretory vesicles in human β-cells. Pflugers Archiv European Journal of Physiology, 2009, 457, 1343-1350.	1.3	51
183	Exocytotic Properties of Human Pancreatic βâ€cells. Annals of the New York Academy of Sciences, 2009, 1152, 187-193.	1.8	51
184	Key Matrix Proteins Within the Pancreatic Islet Basement Membrane Are Differentially Digested During Human Islet Isolation. American Journal of Transplantation, 2017, 17, 451-461.	2.6	50
185	"Take Me To Your Leaderâ€: An Electrophysiological Appraisal of the Role of Hub Cells in Pancreatic Islets. Diabetes, 2020, 69, 830-836.	0.3	50
186	Mitochondrial matrix pH controls oxidative phosphorylation and metabolismâ€secretion coupling in INSâ€1E clonal β cells. FASEB Journal, 2010, 24, 4613-4626.	0.2	49
187	Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic Î ² Cells. Journal of Biological Chemistry, 2015, 290, 21376-21392.	1.6	48
188	Significance of Na/Ca Exchange for Ca2+ Buffering and Electrical Activity in Mouse Pancreatic β-Cells. Biophysical Journal, 1999, 76, 2018-2028.	0.2	46
189	Gs/Gq signaling switch in β cells defines incretin effectiveness in diabetes. Journal of Clinical Investigation, 2020, 130, 6639-6655.	3.9	46
190	Suppression of Sulfonylurea- and Glucose-Induced Insulin Secretion In Vitro and In Vivo in Mice Lacking the Chloride Transport Protein ClC-3. Cell Metabolism, 2009, 10, 309-315.	7.2	45
191	Functional identification of islet cell types by electrophysiological fingerprinting. Journal of the Royal Society Interface, 2017, 14, 20160999.	1.5	45
192	Depolarization-independent net uptake of calcium into clonal insulin-releasing cells exposed to glucose. Bioscience Reports, 1983, 3, 927-937.	1.1	42
193	Regulation of glucagon release from pancreatic A-cells. Biochemical Pharmacology, 1991, 41, 1783-1790.	2.0	42
194	G proteinâ€dependent inhibition of Lâ€ŧype Ca2+ currents by acetylcholine in mouse pancreatic Bâ€cells Journal of Physiology, 1997, 499, 65-76.	1.3	42
195	Does galanin inhibit insulin secretion by opening of the ATP-regulated K+ channel in the β-cell?. Peptides, 1989, 10, 453-457.	1.2	41
196	Two types of Ca2+ currents with different sensitivities to organic Ca2+ channel antagonists in guinea pig pancreatic alpha 2 cells Journal of General Physiology, 1988, 91, 243-254.	0.9	39
197	Measurements of cytoplasmic free Ca2+concentration in human pancreatic islets and insulinoma cells. FEBS Letters, 1991, 291, 310-314.	1.3	39
198	Electrophysiological properties of human beta-cell lines EndoC-βH1 and -βH2 conform with human beta-cells. Scientific Reports, 2018, 8, 16994.	1.6	39

#	Article	IF	CITATIONS
199	Reduced somatostatin signalling leads to hypersecretion of glucagon in mice fed a high-fat diet. Molecular Metabolism, 2020, 40, 101021.	3.0	39
200	Heterogenous impairment of α cell function in type 2 diabetes is linked to cell maturation state. Cell Metabolism, 2022, 34, 256-268.e5.	7.2	39
201	Large dense-core vesicle exocytosis in pancreatic \$beta;-cells monitored by capacitance measurements. Methods, 2004, 33, 302-311.	1.9	38
202	Impaired Insulin Exocytosis in Neural Cell Adhesion Moleculeâ^'/âr' Mice Due to Defective Reorganization of the Submembrane F-Actin Network. Endocrinology, 2009, 150, 3067-3075.	1.4	37
203	Glucose-induced increase in cytoplasmic pH in pancreatic beta-cells is mediated by Na+/H+ exchange, an effect not dependent on protein kinase C Journal of Biological Chemistry, 1991, 266, 23537-23541.	1.6	37
204	Antibody inhibition of synaptosomal protein of 25 kDa (SNAP-25) and syntaxin 1 reduces rapid exocytosis in insulin-secreting cells. Journal of Molecular Endocrinology, 2006, 36, 503-515.	1.1	36
205	Î ² Cell Dysfunction in Type 2 Diabetes: Drained of Energy?. Cell Metabolism, 2019, 29, 1-2.	7.2	36
206	Multivesicular exocytosis in rat pancreatic beta cells. Diabetologia, 2012, 55, 1001-1012.	2.9	35
207	Calcium and pancreatic Î ² -cell function XI. Modification of 45Ca fluxes by Na+ removal. Biochemical Medicine, 1980, 24, 143-152.	0.5	33
208	Direct measurements of increased free cytoplasmic Ca2+in mouse pancreatic β-cells following stimulation by hypoglycemie sulfonylureas. FEBS Letters, 1985, 190, 21-24.	1.3	33
209	GPRC5B a putative glutamate-receptor candidate is negative modulator of insulin secretion. Biochemical and Biophysical Research Communications, 2013, 441, 643-648.	1.0	33
210	Protein kinase C activity affects glucose-induced oscillations in cytoplasmic free Ca2+in the pancreatic B-cell. FEBS Letters, 1992, 303, 85-90.	1.3	32
211	Long-term exposure of mouse pancreatic islets to oleate or palmitate results in reduced glucose-induced somatostatin and oversecretion of glucagon. Diabetologia, 2008, 51, 1689-1693.	2.9	32
212	Quantal ATP release in rat β-cells by exocytosis of insulin-containing LDCVs. Pflugers Archiv European Journal of Physiology, 2009, 458, 389-401.	1.3	32
213	Glucagon-like peptide 1 (7-36) amide stimulates exocytosis in human pancreatic beta-cells by both proximal and distal regulatory steps in stimulus-secretion coupling. Diabetes, 1998, 47, 57-65.	0.3	32
214	Expression of voltage-gated K+ channels in insulin-producing cells. FEBS Letters, 1990, 263, 121-126.	1.3	31
215	New Insights into the Regulation of Glucagon Secretion by Glucagon-like Peptide-1. Hormone and Metabolic Research, 2004, 36, 822-829.	0.7	31
216	Hormone-Sensitive Lipase Deficiency in Mouse Islets Abolishes Neutral Cholesterol Ester Hydrolase Activity but Leaves Lipolysis, Acylglycerides, Fat Oxidation, and Insulin Secretion Intact. Endocrinology, 2004, 145, 3746-3753.	1.4	31

#	Article	IF	CITATIONS
217	Mutant Mice With Calcium-Sensing Receptor Activation Have Hyperglycemia That Is Rectified by Calcilytic Therapy. Endocrinology, 2017, 158, 2486-2502.	1.4	31
218	Manganese accumulation in pancreatic <i>β</i> -cells and its stimulation by glucose. Biochemical Journal, 1982, 202, 435-444.	3.2	30
219	Tolbutamide stimulates exocytosis of glucagon by inhibition of a mitochondrialâ€like ATPâ€sensitive K + (K) Tj E	Qq1 1 0.7	784314 rgB⊤ 30
220	A role of PLC/PKC-dependent pathway in GLP-1-stimulated insulin secretion. Journal of Molecular Medicine, 2017, 95, 361-368.	1.7	30
221	Anti-diabetic action of all-trans retinoic acid and the orphan G protein coupled receptor GPRC5C in pancreatic β-cells. Endocrine Journal, 2017, 64, 325-338.	0.7	30
222	Nanoscale Amperometry Reveals that Only a Fraction of Vesicular Serotonin Content is Released During Exocytosis from Beta Cells. Angewandte Chemie - International Edition, 2021, 60, 7593-7596.	7.2	30
223	Enhanced stimulus-secretion coupling in polyamine-depleted rat insulinoma cells. An effect involving increased cytoplasmic Ca2+, inositol phosphate generation, and phorbol ester sensitivity Journal of Clinical Investigation, 1993, 92, 1910-1917.	3.9	30
224	Glucagon-like peptide I and glucose-dependent insulinotropic polypeptide stimulate Ca2+-induced secretion in rat alpha-cells by a protein kinase A-mediated mechanism. Diabetes, 1997, 46, 792-800.	0.3	29
225	Glucose-induced increase in cytoplasmic pH in pancreatic beta-cells is mediated by Na+/H+ exchange, an effect not dependent on protein kinase C. Journal of Biological Chemistry, 1991, 266, 23537-41.	1.6	29
226	Gi2 proteins couple somatostatin receptors to low-conductance K+ channels in rat pancreatic α-cells. Pflugers Archiv European Journal of Physiology, 2001, 442, 19-26.	1.3	28
227	Desensitization of glucagonâ€like peptide 1 receptors in insulininsulinsecreting βTC3 cells: role of PKAâ€independent mechanisms. British Journal of Pharmacology, 1996, 118, 769-775.	2.7	27
228	The two pore channel TPC2 is dispensable in pancreatic β-cells for normal Ca2+ dynamics and insulin secretion. Cell Calcium, 2016, 59, 32-40.	1.1	26
229	Somatostatin secretion by Na+-dependent Ca2+-induced Ca2+ release in pancreatic delta cells. Nature Metabolism, 2020, 2, 32-40.	5.1	26
230	Cytoplasmic calcium transients due to single action potentials and voltage-clamp depolarizations in mouse pancreatic B-cells. EMBO Journal, 1992, 11, 2877-84.	3.5	26
231	Direct evidence for opposite effects of D-glucose and D-glyceraldehyde on cytoplasmic pH of mouse pancreatic β-cells. Bioscience Reports, 1986, 6, 355-361.	1.1	25
232	Alpha2-adrenoreceptor stimulation does not inhibit L-type calcium channels in mouse pancreatic β-cells. Bioscience Reports, 1991, 11, 147-157.	1.1	25
233	Compound exocytosis in voltage-clamped mouse pancreatic β-cells revealed by carbon fibre amperometry. Pflugers Archiv European Journal of Physiology, 2000, 439, 634-645.	1.3	25
234	A Central Small Amino Acid in the VAMP2 Transmembrane Domain Regulates the Fusion Pore in Exocytosis. Scientific Reports, 2017, 7, 2835.	1.6	25

#	Article	IF	CITATIONS
235	Compound exocytosis in voltage-clamped mouse pancreatic β-cells revealed by carbon fibre amperometry. Pflugers Archiv European Journal of Physiology, 2000, 439, 634-645.	1.3	24
236	Pathophysiological, Genetic and Gene Expression Features of a Novel Rodent Model of the Cardio-Metabolic Syndrome. PLoS ONE, 2008, 3, e2962.	1.1	24
237	SEDLIN Forms Homodimers: Characterisation of SEDLIN Mutations and Their Interactions with Transcription Factors MBP1, PITX1 and SF1. PLoS ONE, 2010, 5, e10646.	1.1	23
238	Angular Approach Scanning Ion Conductance Microscopy. Biophysical Journal, 2016, 110, 2252-2265.	0.2	23
239	Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization. Diabetes, 1995, 44, 767-774.	0.3	23
240	The interaction between manganese and calcium fluxes in pancreatic β-cells. Biochemical Journal, 1983, 210, 307-314.	3.2	21
241	TCF7L2 and Diabetes: A Tale of Two Tissues, and of Two Species. Cell Metabolism, 2013, 17, 157-159.	7.2	21
242	β-cell secretory dysfunction: a key cause of type 2 diabetes. Lancet Diabetes and Endocrinology,the, 2020, 8, 370.	5.5	21
243	Glucose stimulates the entry of Ca ²⁺ into the insulinâ€producing <i>β</i> cells but not into the glucagonâ€producing <i>α</i> ₂ cells. Acta Physiologica Scandinavica, 1987, 131, 230-234.	2.3	20
244	Review: Insulin secretion: function and therapy of pancreatic beta-cells in diabetes. British Journal of Diabetes and Vascular Disease, 2005, 5, 187-191.	0.6	20
245	High-content screening identifies a role for Na ⁺ channels in insulin production. Royal Society Open Science, 2015, 2, 150306.	1.1	20
246	Arginine-vasopressin mediates counter-regulatory glucagon release and is diminished in type 1 diabetes. ELife, 2021, 10, .	2.8	20
247	Demonstration of A-currents in pancreatic islet cells. Pflugers Archiv European Journal of Physiology, 1989, 413, 441-443.	1.3	19
248	Calcium Currents in Insulin-Secreting ?-Cells. Annals of the New York Academy of Sciences, 1989, 560, 403-409.	1.8	19
249	Single Calcium Channel Activity in Mouse Pancreatic ?-Cells. Annals of the New York Academy of Sciences, 1989, 560, 410-412.	1.8	19
250	Demonstration of a novel apamin-insensitive calcium-activated K+ channel in mouse pancreatic B cells. Pflugers Archiv European Journal of Physiology, 1993, 422, 443-448.	1.3	19
251	Enhancement of glucagon secretion in mouse and human pancreatic alpha cells by protein kinase C (PKC) involves intracellular trafficking of PKCα and PKCδ. Diabetologia, 2010, 53, 717-729.	2.9	19
252	Fusion pore in exocytosis: More than an exit gate? A β-cell perspective. Cell Calcium, 2017, 68, 45-61.	1.1	19

#	Article	IF	CITATIONS
253	Short-term high glucose culture potentiates pancreatic beta cell function. Scientific Reports, 2018, 8, 13061.	1.6	19
254	Glucose stimulates somatostatin secretion in pancreatic δ-cells by cAMP-dependent intracellular Ca2+ release. Journal of General Physiology, 2019, 151, 1094-1115.	0.9	19
255	NALCN: a regulated leak channel. EMBO Reports, 2009, 10, 963-964.	2.0	18
256	Expression of K channels inXenopus laevisoocytes injected with poly(A+) mRNA from the insulin-secreting β-cell line, HIT T15. FEBS Letters, 1988, 239, 185-189.	1.3	17
257	Perchlorate stimulates insulin secretion by shifting the gating of L-type Ca2+ currents in mouse pancreatic B-cells towards negative potentials. Pflugers Archiv European Journal of Physiology, 2001, 441, 587-595.	1.3	17
258	Monitoring real-time hormone release kinetics <i>via</i> high-content 3-D imaging of compensatory endocytosis. Lab on A Chip, 2018, 18, 2838-2848.	3.1	17
259	Inhibition of L-type calcium channels by internal GTP [?S] in mouse pancreatic ? cells. Pflugers Archiv European Journal of Physiology, 1992, 420, 72-77.	1.3	16
260	Imidazoline NNC77-0074 stimulates insulin secretion and inhibits glucagon release by control of Ca2+-dependent exocytosis in pancreatic α- and β-cells. European Journal of Pharmacology, 2003, 466, 213-221.	1.7	16
261	Insulin Secretion. Journal of General Physiology, 2004, 124, 623-625.	0.9	16
262	The Insulin Receptor Talks to Glucagon?. Cell Metabolism, 2009, 9, 303-305.	7.2	16
263	Exocytosis from pancreatic β-cells: mathematical modelling of the exit of low-molecular-weight granule content. Interface Focus, 2011, 1, 143-152.	1.5	16
264	â€~Resistance is futile?' – paradoxical inhibitory effects of K ATP channel closure in glucagonâ€secreting αâ€cells. Journal of Physiology, 2020, 598, 4765-4780.	1.3	16
265	Insulinotropic action of AICA riboside. II. Secretory, metabolic and cationic aspects. Diabetes Research, 1994, 25, 25-37.	0.1	16
266	Inhibition of ATP-regulated K+-channels by a photoactivatable ATP-analogue in mouse pancreatic β-cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1092, 347-349.	1.9	14
267	Glutamate primes the pump. Nature, 1999, 402, 595-596.	13.7	14
268	Peripancreatic adipose tissue protects against high-fat-diet-induced hepatic steatosis and insulin resistance in mice. International Journal of Obesity, 2020, 44, 2323-2334.	1.6	14
269	A Variation on the Theme: SGLT2 Inhibition and Glucagon Secretion in Human Islets. Diabetes, 2020, 69, 864-866.	0.3	14
270	Cell–cell communication between adipocytes and pancreatic β-cells in acoustically levitated droplets. Integrative Biology (United Kingdom), 2009, 1, 595.	0.6	13

#	Article	IF	CITATIONS
271	Ion channels, electrical activity and insulin secretion. Diabète & Métabolisme, 1994, 20, 138-45.	0.3	13
272	The glucagon-producing alpha cell: an electrophysiologically exceptional cell. Diabetologia, 2010, 53, 1827-1830.	2.9	12
273	Per-arnt-sim (PAS) domain kinase (PASK) as a regulator of glucagon secretion. Diabetologia, 2011, 54, 719-721.	2.9	12
274	The vascular architecture of the pancreatic islets: A homage to August Krogh. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2021, 252, 110846.	0.8	12
275	Glucose-responsive beta cells in islets isolated from a patient with long-standing type 1 diabetes mellitus. Diabetologia, 2011, 54, 200-202.	2.9	11
276	Incretin hormones, insulin, glucagon and advanced glycation end products in relation to cognitive function in older people with and without diabetes, a populationâ€based study. Diabetic Medicine, 2020, 37, 1157-1166.	1.2	11
277	Nanoscale Amperometry Reveals that Only a Fraction of Vesicular Serotonin Content is Released During Exocytosis from Beta Cells. Angewandte Chemie, 2021, 133, 7671-7674.	1.6	11
278	Neuropeptides in the Regulation of Islet Hormone Secretion — Localization, Effects and Mode of Action. Advances in Experimental Medicine and Biology, 1991, 291, 129-142.	0.8	11
279	Ca2+Transport in Pancreatic β-Cells during Glucose Stimulation of Insulin Secretion. Upsala Journal of Medical Sciences, 1980, 85, 321-329.	0.4	9
280	Direct determination of manganese in microgram amounts of pancreatic tissue by electrothermal atomic absorption spectrometry. Analytica Chimica Acta, 1982, 140, 325-329.	2.6	9
281	Intracellular pH, cytosolic calcium concentration and electrical activity in RINm5F insulinoma cells. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1192, 107-111.	1.4	9
282	The Riddle of Formycin A Insulinotropic Action. Biochemical and Molecular Medicine, 1996, 57, 47-63.	1.5	9
283	Response to Comment on Satin et al. "Take Me To Your Leader― An Electrophysiological Appraisal of the Role of Hub Cells in Pancreatic Islets. Diabetes 2020;69:830–836. Diabetes, 2020, 69, e12-e13.	0.3	9
284	Intracellular pH and the stimulus-secretion coupling in insulin-producing RINm5F cells. Biochemical Journal, 1992, 287, 59-66.	1.7	8
285	Demonstration of Voltage-Dependent and TTX-Sensitive Na+-Channels in Human Melanocytes. Pigment Cell & Melanoma Research, 1994, 7, 333-338.	4.0	8
286	Nateglinide, but not repaglinide, stimulates growth hormone release in rat pituitary cells by inhibition of K channels and stimulation of cyclic AMP-dependent exocytosis. European Journal of Endocrinology, 2002, 147, 133-142.	1.9	8
287	Release of insulin granules by simultaneous, highâ€speed correlative SICMâ€FCM. Journal of Microscopy, 2021, 282, 21-29.	0.8	8
288	Calcium and Potassium Currents Recorded from Pancreatic β-Cells Under Voltage Clamp Control. Advances in Experimental Medicine and Biology, 1986, 211, 167-175.	0.8	8

#	Article	IF	CITATIONS
289	Acetyl-CoA-carboxylase 1 (ACC1) plays a critical role in glucagon secretion. Communications Biology, 2022, 5, 238.	2.0	8
290	Mechanisms of action of entero-insular hormones and neural input on the insulin secretory process. Biochemical Society Transactions, 1990, 18, 119-122.	1.6	7
291	Biphasic voltageâ€dependent inactivation of human Na _V 1.3, 1.6 and 1.7 Na ⁺ channels expressed in rodent insulinâ€secreting cells. Journal of Physiology, 2018, 596, 1601-1626.	1.3	6
292	EFFECTS OF CATIONIC MODIFICATION ON SUPERFICIAL BINDING AND INTRACELLULAR ⁴⁵Ca UPTAKE BY DECAPSULATED <i>OB/OB</i> MOUSE PANCREATIC ISLETS . Biomedical Research, 1987, 8, 153-159.	0.3	5
293	Molecular mechanism underlying glucagon-like peptide 1 induced calcium mobilization from internal stores in insulin-secreting b TC3 cells. Acta Physiologica Scandinavica, 1996, 157, 349-351.	2.3	4
294	Dramatis Personae in β-Cell Mass Regulation: Enter SerpinB1. Cell Metabolism, 2016, 23, 8-10.	7.2	4
295	Improving the physiological realism of experimental models. Interface Focus, 2016, 6, 20150076.	1.5	4
296	Clucose in glucagon release. Nature, 1990, 344, 716-716.	13.7	3
297	Interaction with the inositol 1,4,5-trisphosphate receptor promotes Ca2+sequestration in permeabilised insulin-secreting cells. FEBS Letters, 1991, 288, 27-29.	1.3	3
298	Dynamics of the cationic, bioelectrical and secretory responses to formycin A in pancreatic islet cells. Pflugers Archiv European Journal of Physiology, 1996, 431, 353-362.	1.3	3
299	Regulation of Insulin Granule Exocytosis. , 2008, , 147-176.		3
300	Reducing hyperglucagonaemia in type 2 diabetes using lowâ€dose glibenclamide: Results of the <scp>LEGENDâ€A</scp> pilot study. Diabetes, Obesity and Metabolism, 2022, 24, 1671-1675.	2.2	3
301	Secretory and electrophysiological characteristics of insulin cells from gastrectomized mice: Evidence for the existence of insulinotropic agents in the stomach. Regulatory Peptides, 2007, 139, 31-38.	1.9	2
302	MEASUREMENTS OF CYTOPLASMIC pH IN INSULIN-RELEASING CELLS WITH INTRACELLULARLY TRAPPED PHENOL RED . Biomedical Research, 1986, 7, 139-144.	0.3	1
303	Measurements of membrane potential, transmembrane 45Ca fluxes, cytoplasmic free Ca2+ concentration and insulin release by transplantable rat insulinoma cells maintained in tissue culture. British Journal of Cancer, 1988, 58, 22-29.	2.9	1
304	Electrical bursting in islet ß cells. Nature, 1992, 357, 28-28.	13.7	1
305	Matthias Braun, 23 July 1966–16 November 2013. Diabetologia, 2014, 57, 2431-2432.	2.9	0

Action of Incretins on the Pancreatic \hat{I} t Cell: Control of Glucagon Secretion. , 2015, , 79-97.

#	Article	IF	CITATIONS
307	Type-2 Diabetes - A Fusion Pore Disease?. Biophysical Journal, 2018, 114, 10a.	0.2	0
308	Galanin inhibits β-cell electrical activity by a G-protein-regulated sulphonylurea-insensitive mechanism. , 1991, , 237-245.		0
309	Components of insulin secretion: lessons to be learnt from capacitance. The Japanese Journal of Physiology, 1997, 47 Suppl 1, S21.	0.9	0