Gregory M Odegard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1234079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constitutive modeling of nanotube–reinforced polymer composites. Composites Science and Technology, 2003, 63, 1671-1687.	3.8	682
2	Equivalent-continuum modeling of nano-structured materials. Composites Science and Technology, 2002, 62, 1869-1880.	3.8	561
3	Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer, 2005, 46, 553-562.	1.8	537
4	The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation. Composites Science and Technology, 2003, 63, 1655-1661.	3.8	439
5	Nanoclay-modified asphalt materials: Preparation and characterization. Construction and Building Materials, 2011, 25, 1072-1078.	3.2	349
6	Molecular modeling of crosslinked epoxy polymers: The effect of crosslink density on thermomechanical properties. Polymer, 2011, 52, 2445-2452.	1.8	281
7	Physical aging of epoxy polymers and their composites. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1695-1716.	2.4	274
8	Mechanical properties of graphene nanoplatelet/epoxy composites. Journal of Applied Polymer Science, 2013, 128, 4217-4223.	1.3	241
9	Computational materials: Multi-scale modeling and simulation of nanostructured materials. Composites Science and Technology, 2005, 65, 2416-2434.	3.8	208
10	Characterization of viscoelastic properties of polymeric materials through nanoindentation. Experimental Mechanics, 2005, 45, 130-136.	1.1	197
11	Constitutive modeling of piezoelectric polymer composites. Acta Materialia, 2004, 52, 5315-5330.	3.8	196
12	Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: Multiscale modeling and experiments. Carbon, 2015, 95, 100-112.	5.4	190
13	Transversely isotropic tensile material properties of skeletal muscle tissue. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3, 124-129.	1.5	170
14	Asynchronous Crystal Cell Expansion during Lithiation of K ⁺ -Stabilized α-MnO ₂ . Nano Letters, 2015, 15, 2998-3007.	4.5	161
15	Predicting mechanical response of crosslinked epoxy using ReaxFF. Chemical Physics Letters, 2014, 591, 175-178.	1.2	133
16	Simulation of the Elastic and Ultimate Tensile Properties of Diamond, Graphene, Carbon Nanotubes, and Amorphous Carbon Using a Revised ReaxFF Parametrization. Journal of Physical Chemistry A, 2015, 119, 9710-9721.	1.1	97
17	Molecular modeling of EPON-862/graphite composites: Interfacial characteristics for multiple crosslink densities. Composites Science and Technology, 2013, 76, 92-99.	3.8	85
18	Effect of Nanotube Functionalization on the Elastic Properties of Polyethylene Nanotube Composites. AIAA Journal, 2005, 43, 1828-1835.	1.5	84

#	Article	IF	CITATIONS
19	The effect of time step, thermostat, and strain rate on ReaxFF simulations of mechanical failure in diamond, graphene, and carbon nanotube. Journal of Computational Chemistry, 2015, 36, 1587-1596.	1.5	81
20	Determination of shear strength of unidirectional composite materials with the losipescu and 10° off-axis shear tests. Composites Science and Technology, 2000, 60, 2917-2943.	3.8	79
21	Direct Evidence of Lithium-Induced Atomic Ordering in Amorphous TiO ₂ Nanotubes. Chemistry of Materials, 2014, 26, 1660-1669.	3.2	75
22	Elastic-plastic and failure properties of a unidirectional carbon/PMR-15 composite at room and elevated temperatures. Composites Science and Technology, 2000, 60, 2979-2988.	3.8	70
23	Molecular Modeling of Cross-Linked Polymers with Complex Cure Pathways: A Case Study of Bismaleimide Resins. Macromolecules, 2018, 51, 1830-1840.	2.2	64
24	Finite size effect on the piezoelectric properties of ZnO nanobelts: A molecular dynamics approach. Acta Materialia, 2012, 60, 5117-5124.	3.8	63
25	Giant Stretchability and Reversibility of Tightly Wound Helical Carbon Nanotubes. Journal of the American Chemical Society, 2013, 135, 13775-13785.	6.6	62
26	Comparison of two models of SWCN polymer composites. Composites Science and Technology, 2004, 64, 1011-1020.	3.8	61
27	Comparing the mechanical response of diâ€, triâ€, and tetraâ€functional resin epoxies with reactive molecular dynamics. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 255-264.	2.4	61
28	Multiscale modeling and analysis of graphene nanoplatelet/carbon fiber/epoxy hybrid composite. Composites Part B: Engineering, 2017, 131, 82-90.	5.9	56
29	Cations controlled growth of \hat{l}^2 -MnO2 crystals with tunable facets for electrochemical energy storage. Nano Energy, 2018, 48, 301-311.	8.2	56
30	Nonlinear multiscale modeling of polymer materials. International Journal of Solids and Structures, 2007, 44, 1161-1179.	1.3	55
31	Micro- and mesomechanics of 8-harness satin woven fabric composites: I — evaluation of elastic behavior. Composites Part A: Applied Science and Manufacturing, 2001, 32, 1627-1655.	3.8	52
32	Atomic Origins of Monoclinic-Tetragonal (Rutile) Phase Transition in Doped VO ₂ Nanowires. Nano Letters, 2015, 15, 7179-7188.	4.5	52
33	Multiscale modeling of carbon fiber/carbon nanotube/epoxy hybrid composites: Comparison of epoxy matrices. Composites Science and Technology, 2018, 166, 20-26.	3.8	51
34	Hyperelastic properties of human meniscal attachments. Journal of Biomechanics, 2011, 44, 413-418.	0.9	49
35	Nanocomposite electrical generator based on piezoelectric zinc oxide nanowires. Journal of Applied Physics, 2010, 108, 114303.	1.1	48
36	Fracture properties of nanographene reinforced EPON 862 thermoset polymer system. Composites Science and Technology, 2015, 114, 87-93.	3.8	48

GREGORY M ODEGARD

#	Article	IF	CITATIONS
37	Multiscale modeling of carbon fiber- graphene nanoplatelet-epoxy hybrid composites using a reactive force field. Composites Part B: Engineering, 2019, 172, 628-635.	5.9	46
38	A machine learning framework for predicting the shear strength of carbon nanotube-polymer interfaces based on molecular dynamics simulation data. Composites Science and Technology, 2021, 207, 108627.	3.8	46
39	2-D nano-scale finite element analysis of a polymer field. Composites Science and Technology, 2003, 63, 1581-1590.	3.8	42
40	Thermal conductivity of graphene nanoplatelet/cycloaliphatic epoxy composites: Multiscale modeling. Carbon, 2018, 140, 653-663.	5.4	41
41	Multiscale modeling of PEEK using reactive molecular dynamics modeling and micromechanics. Polymer, 2019, 163, 96-105.	1.8	40
42	Nanoindentation of the insertional zones of human meniscal attachments into underlying bone. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2, 339-347.	1.5	38
43	Regional and fiber orientation dependent shear properties and anisotropy of bovine meniscus. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 2024-2030.	1.5	38
44	Molecular Dynamics Modeling of Epoxy Resins Using the Reactive Interface Force Field. Macromolecules, 2021, 54, 9815-9824.	2.2	37
45	Facesheet delamination of composite sandwich materials at cryogenic temperatures. Composites Science and Technology, 2006, 66, 2423-2435.	3.8	36
46	Parametric Study of ReaxFF Simulation Parameters for Molecular Dynamics Modeling of Reactive Carbon Gases. Journal of Chemical Theory and Computation, 2012, 8, 3003-3008.	2.3	36
47	Skeletal muscle tensile strain dependence: Hyperviscoelastic nonlinearity. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53, 445-454.	1.5	35
48	Determination and Modeling of Mechanical Properties for Graphene Nanoplatelet/Epoxy Composites. Polymer Composites, 2018, 39, 1845-1851.	2.3	32
49	ReaxFF Reactive Force Field Study of Polymerization of a Polymer Matrix in a Carbon Nanotube-Composite System. Journal of Physical Chemistry C, 2020, 124, 20488-20497.	1.5	31
50	Interfacial characteristics between flattened CNT stacks and polyimides: A molecular dynamics study. Computational Materials Science, 2020, 185, 109970.	1.4	30
51	Intraneural ganglia: a clinical problem deserving a mechanistic explanation and model. Neurosurgical Focus, 2009, 26, E11.	1.0	27
52	Interfacial modeling of flattened CNT composites with cyanate ester and PEEK polymers. Composites Part B: Engineering, 2021, 211, 108672.	5.9	27
53	Nonlinear Analysis of Woven Fabric-Reinforced Graphite/PMR-15 Composites under Shear-Dominated Biaxial Loads. Mechanics of Advanced Materials and Structures, 2000, 7, 129-152.	1.5	26
54	Structure-property relationships in polymer composites with micrometer and submicrometer graphite platelets. Experimental Mechanics, 2005, 45, 507-516.	1.1	26

GREGORY M ODEGARD

#	Article	IF	CITATIONS
55	Constitutive Modeling of Nanotube-Reinforced Polymer Composites. , 2002, , .		25
56	Simulating the effects of carbon nanotube continuity and interfacial bonding on composite strength and stiffness. Composites Science and Technology, 2018, 166, 10-19.	3.8	25
57	Effects of carbon fillers on the conductivity and tensile properties of polyetheretherketone composites. Polymer Composites, 2018, 39, E807.	2.3	24
58	Reactive Molecular Dynamics Simulation of Epoxy for the Full Cross-Linking Process. ACS Applied Polymer Materials, 2021, 3, 5788-5797.	2.0	24
59	Multiscale modeling of polymer materials using a statistics-based micromechanics approach. Acta Materialia, 2009, 57, 525-532.	3.8	22
60	Transverse mechanical properties of collagen fibers from nanoindentation. Journal of Materials Science: Materials in Medicine, 2011, 22, 1375-1381.	1.7	22
61	A validated model of passive skeletal muscle to predict force and intramuscular pressure. Biomechanics and Modeling in Mechanobiology, 2017, 16, 1011-1022.	1.4	22
62	Multiscale thermal modeling of cured cycloaliphatic epoxy/carbon fiber composites. Journal of Applied Polymer Science, 2018, 135, 46371.	1.3	22
63	Insight into Geometry-Controlled Mechanical Properties of Spiral Carbon-Based Nanostructures. Journal of Physical Chemistry C, 2019, 123, 3226-3238.	1.5	22
64	How does tissue preparation affect skeletal muscle transverse isotropy?. Journal of Biomechanics, 2016, 49, 3056-3060.	0.9	21
65	Tensile and conductivity properties of epoxy composites containing carbon black and graphene nanoplatelets. Journal of Composite Materials, 2018, 52, 3909-3918.	1.2	21
66	Shielding effectiveness of carbon-filled polypropylene composites. Journal of Composite Materials, 2016, 50, 2177-2189.	1.2	20
67	The development of multiscale models for predicting the mechanical response of GNP reinforced composite plate. Composite Structures, 2018, 206, 526-534.	3.1	20
68	Multiscale Modeling of Epoxy-Based Nanocomposites Reinforced with Functionalized and Non-Functionalized Graphene Nanoplatelets. Polymers, 2021, 13, 1958.	2.0	20
69	Prediction of the Interfacial Properties of High-Performance Polymers and Flattened CNT-Reinforced Composites Using Molecular Dynamics. Langmuir, 2021, 37, 11526-11534.	1.6	20
70	Failure Investigation of Graphite/Polyimide Fabric Composites at Room and Elevated Temperatures Using the Biaxial Iosipescu Test. Journal of Composite Materials, 1999, 33, 2038-2079.	1.2	17
71	Elasto-Plastic Analysis of the Iosipescu Shear Test. Journal of Composite Materials, 1999, 33, 1981-2001.	1.2	17
72	Modeling and Testing of the Viscoelastic Properties of a Graphite Nanoplatelet/Epoxy Composite. Journal of Intelligent Material Systems and Structures, 2006, 17, 239-246.	1.4	17

GREGORY M ODEGARD

#	Article	IF	CITATIONS
73	Understanding the Origin of the Low Cure Shrinkage of Polybenzoxazine Resin by Computational Simulation. ACS Applied Polymer Materials, 2021, 3, 6407-6415.	2.0	17
74	A continuum elastic–plastic model for woven-fabric/polymer-matrix composite materials under biaxial stresses. Composites Science and Technology, 2001, 61, 2501-2510.	3.8	15
75	Molecular modeling of physical aging in epoxy polymers. Journal of Applied Polymer Science, 2013, 128, 660-666.	1.3	15
76	Accelerated hydrothermal aging of cycloaliphatic epoxy/graphene nanoparticle composites. Polymer Degradation and Stability, 2016, 133, 131-135.	2.7	15
77	Modeling Skeletal Muscle Stress and Intramuscular Pressure: A Whole Muscle Active–Passive Approach. Journal of Biomechanical Engineering, 2018, 140, .	0.6	15
78	Critical Examination of the losipescu Shear Test as Applied to Odegrees Unidirectional Composite Materials. Mechanics of Advanced Materials and Structures, 1999, 6, 229-256.	1.5	14
79	The Effect of Chemical Functionalization on Mechanical Properties of Nanotube/Polymer Composites. , 2003, , .		14
80	Prediction of Mechanical Properties of Polymers with Various Force Fields. , 2005, , .		14
81	A method for assessing the fit of a constitutive material model to experimental stress–strain data. Computer Methods in Biomechanics and Biomedical Engineering, 2010, 13, 247-256.	0.9	14
82	Size-dependent mechanical behavior of nanoscale polymer particles through coarse-grained molecular dynamics simulation. Nanoscale Research Letters, 2013, 8, 541.	3.1	14
83	Simulation of mechanical performance limits and failure of carbon nanotube composites. Modelling and Simulation in Materials Science and Engineering, 2016, 24, 025012.	0.8	14
84	Cure Behavior Changes and Compression of Carbon Nanotubes in Aerospace Grade Bismaleimide-Carbon Nanotube Sheet Nanocomposites. ACS Applied Nano Materials, 2021, 4, 2476-2485.	2.4	14
85	Error analysis of cine phase contrast MRI velocity measurements used for strain calculation. Journal of Biomechanics, 2015, 48, 95-103.	0.9	13
86	Wetting Simulations of High-Performance Polymer Resins on Carbon Surfaces as a Function of Temperature Using Molecular Dynamics. Polymers, 2021, 13, 2162.	2.0	13
87	Investigation of Al-Zn-Zr and Al-Zn-Ni alloys for high electrical conductivity and strength application. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 785-797.	2.6	12
88	The Effect of Eccentric Loads on the Macroscopic Strain and Stress Distributions in Woven Fabric Composite Iosipescu Specimens. Journal of Composite Materials, 2002, 36, 571-588.	1.2	11
89	An elastic micropolar mixture theory for predicting elastic properties of cellular materials. Mechanics of Materials, 2008, 40, 602-615.	1.7	11
90	Shielding effectiveness of carbonâ€filled polycarbonate composites. Journal of Applied Polymer Science, 2015, 132, .	1.3	11

#	Article	IF	CITATIONS
91	The assessment of carbon nanotube (CNT) geometry on the mechanical properties of epoxy nanocomposites. Journal of Micromechanics and Molecular Physics, 2020, 05, 2050005.	0.7	11
92	Multiscale Modeling for Virtual Manufacturing of Thermoset Composites. , 2020, , .		11
93	Process modeling and characterization of thermoset composites for residual stress prediction. Mechanics of Advanced Materials and Structures, 2023, 30, 486-497.	1.5	11
94	A case for poroelasticity in skeletal muscle finite element analysis: experiment and modeling. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 598-601.	0.9	10
95	How to characterize interfacial load transfer in spiral carbon-based nanostructure-reinforced nanocomposites: is this a geometry-dependent process?. Physical Chemistry Chemical Physics, 2019, 21, 23880-23892.	1.3	10
96	Mechanical Response of Polymer Epoxy/BMI Composites with Graphene and a Boron Nitride Monolayer from First Principles. ACS Applied Polymer Materials, 2021, 3, 1052-1059.	2.0	10
97	Computationally Guided Design of Large-Diameter Carbon Nanotube Bundles for High-Strength Materials. ACS Applied Nano Materials, 2021, 4, 11115-11125.	2.4	10
98	Microstructure and properties of precipitation-hardened Zr and Zn-Zr based aluminum alloys. Journal of Alloys and Compounds, 2019, 788, 1218-1230.	2.8	9
99	Computational Investigation of Large-Diameter Carbon Nanotubes in Bundles for High-Strength Materials. ACS Applied Nano Materials, 2020, 3, 5014-5018.	2.4	9
100	Constitutive Modeling of Crosslinked Nanotube Materials. , 2004, , .		8
101	Mechanical Properties and Characterization of Epoxy Composites Containing Highly Entangled As-Received and Acid Treated Carbon Nanotubes. Nanomaterials, 2021, 11, 2445.	1.9	8
102	Multi-scale Approach to Predict Cure-Induced Residual Stresses in an Epoxy System. , 0, , .		8
103	Effect of chain architecture on the compression behavior of nanoscale polyethylene particles. Nanoscale Research Letters, 2013, 8, 322.	3.1	7
104	Molecular Dynamics Modeling of Interfacial Interactions between Flattened Carbon Nanotubes and Amorphous Carbon: Implications for Ultra-Lightweight Composites. ACS Applied Nano Materials, 2022, 5, 5915-5924.	2.4	7
105	Computational Modeling of Hybrid Carbon Fiber/Epoxy Composites Reinforced with Functionalized and Non-Functionalized Graphene Nanoplatelets. Nanomaterials, 2021, 11, 2919.	1.9	6
106	Atomistic Modeling of Cross-linked Epoxy Polymer. , 2010, , .		5
107	6.2 Computational Multiscale Modeling – Nanoscale to Macroscale. , 2018, , 28-51.		5
108	Modeling-Driven Damage Tolerant Design of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid		5

Modeling-Driven Damage Tolerant Design of Graphene Nanoplat Composite Panels for Full-Scale Aerospace Structures. , 2019, , .

#	Article	IF	CITATIONS
109	Characterization of viscoelastic properties of polymeric materials through nanoindentation. , 2005, 45, 130.		5
110	Modeling and Characterization of Elastic Constants of Functionalized Nanotube Materials. Materials Research Society Symposia Proceedings, 2003, 791, 340.	0.1	4
111	Accelerated hygrothermal aging of Talc/Cycloaliphatic epoxy composites. Polymer Composites, 2019, 40, 2946-2953.	2.3	4
112	Prediction of Residual Stress Build-up in Polymer Matrix Composite During Cure using a Two-scale Approach. , 0, , .		4
113	Multiscale Modeling of Nanocomposite Materials. , 2009, , 221-245.		3
114	Molecular Modeling of the Influence of Crosslink Distribution on Epoxy Polymers. , 2012, , .		3
115	Use of a Poroelastic Model to Predict Intramuscular Pressure. , 2013, 2013, 2174-2183.		3
116	Molecular Dynamics and Finite Element Investigation of Polymer Interphase Effects on Effective Stiffness of Wavy Aligned Carbon Nanotube Composites. , 2015, , .		3
117	Thermal, electrical, and mechanical properties of talc―and glass microsphereâ€Reinforced Cycloaliphatic epoxy composites. Polymer Composites, 2018, 39, E1581.	2.3	3
118	Nano-Scale Finite Element Analysis of Polymer Networks. , 2002, , .		2
119	Predicting the Influence of Nano-scale Material Structure on the In-plane Buckling of Orthotropic Plates. , 2004, , .		2
120	Multiscale Constitutive Modeling of Polymer Materials. , 2007, , 179.		2
121	Tensile Material Properties of Skeletal Muscle Tissue in Longitudinal and Transverse Directions. , 2008, , .		2
122	A Novel Approach to Characterization of Composite Polymer Matrix Materials for Integrated Computational Materials Engineering Approaches. , 2021, , .		2
123	Molecular Dynamics Modeling to Probe the Effect of Surface Functionalization on the Interfacial Adhesion and Shear Strength of Graphene/Epoxy Nanocomposites. , 2021, , .		2
124	MD Modeling of Epoxy-base Nanocomposites Reinforced with Functionalized Graphene Nanoplatelets. , 0, , .		2
125	A Multi-scale Approach for Modelling the Cure of Thermoset Polymers within ICME. , 0, , .		2
126	Predicting Mechanical Properties Using Continuum Mechanics-Based Approach: Micro-mechanics and Finite Element Analysis. Springer Series in Materials Science, 2021, , 203-233.	0.4	2

#	Article	IF	CITATIONS
127	Influence of stoichiometry on thermo-mechanical properties of DGEBF/DETDA epoxy. , 2022, , .		2
128	Temperature Effects in Multiscale Modeling of Polymer Materials. , 2008, , .		1
129	Thermodynamically-Consistent Multiscale Constitutive Modeling of Glassy Polymer Materials. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2009, , 43-51.	0.1	1
130	Atomistic Modeling of Cross-linked Epoxy Polymer. , 2011, , .		1
131	Atomic Resolution Studies of W Dopants Effect on the Phase Transformation of VO2. Microscopy and Microanalysis, 2016, 22, 884-885.	0.2	1
132	Novel Multiscale Approach for the Virtual Manufacturing of Thermoset Composites within ICME. , 2019, , .		1
133	Finite Element Modeling of Intraneural Ganglion Cysts of the Common Peroneal Nerve. , 2009, , .		1
134	Modeling of Carbon Nanotube/Polymer Composites. , 2005, , .		1
135	THE EFFECT OF FUNCTIONALIZATION ON DOUBLE-WALLED NANOTUBE MATERIALS. , 2005, , .		1
136	Synthesis, Characterization, and Modeling of Nanotube Materials with Variable Stiffness Tethers. Materials Research Society Symposia Proceedings, 2004, 851, 206.	0.1	0
137	Multiscale Modeling of Polymer Materials at Cryogenic and Elevated Temperatures. , 2006, , .		0
138	Parametric Studies in Multiscale Modeling of High-Performance Polymers. , 2007, , .		0
139	MATERIAL CHARACTERIZATION OF HUMAN MENISCAL HORN ATTACHMENTS. Journal of Biomechanics, 2008, 41, S317.	0.9	0
140	An Elastic Micropolar Mixture Theory for Predicting Elastic Properties of Cellular Materials. , 2008, ,		0
141	Nanowelding and Multiscale Modeling and Simulation. , 2008, , .		0
142	Effect of Chain Length in Multiscale Constitutive Modeling of Polymer Materials. , 2009, , .		0
143	A Validated Finite Element Model of Force in Active and Passive Skeletal Muscle. , 2010, , .		0
144	Multiscale modeling of polymer–carbon nanotube composites. , 2011, , 376-399.		0

#	Article	IF	CITATIONS
145	A Poroelastic Model of Skeletal Muscle Tissue Used to Predict Intramuscular Pressure. , 2012, , .		Ο
146	Predicting Thermo-Mechanical Response of Crosslinked Epoxy using ReaxFF. , 2014, , .		0
147	Electrical, Thermal, and Tensile Properties of Cycloaliphatic Epoxy/Carbon Black and Cycloaliphatic Epoxy/Fumed Silica Nanocomposites. , 2018, , .		Ο
148	Molecular Modeling of PEEK Resins for Prediction of Properties in Process Modeling. , 2021, , .		0
149	An Elastic Micropolar Mixture Theory Approach for Predicting Elastic Properties of Open Cell Foams. , 2007, , .		0
150	Failure Properties and Material Characterization of Human Meniscal Attachments. , 2008, , .		0
151	Validation of a Finite Element Model of Passive Force and Pressure in Skeletal Muscle. , 2009, , .		Ο
152	Regional and Fiber Orientation Dependent Shear Properties and Anisotropic Modeling of Bovine Meniscus. , 2011, , .		0
153	Resin Using Reactive Force Field: Thermo-Mechanical Properties. Journal of Mechanics Engineering and Automation, 2015, 5, .	0.0	0
154	Multiscale Modeling of PEEK Using Reactive Molecular Dynamics and Micromechanics. , 0, , .		0
155	Advanced Nanoengineered Materials. , 2018, , 275-304.		Ο
156	The Effect of Chirality and Strain Rate on Mechanical Properties of Carbon Nanotube (CNT) and CNT/Epoxy Composites. , 0, , .		0