## Lucien Baldas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1233978/publications.pdf Version: 2024-02-01



LUCIEN RAIDAS

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A novel experimental setup for gas microflows. Microfluidics and Nanofluidics, 2010, 8, 57-72.                                                                                        | 2.2 | 99        |
| 2  | Self-ordered particle trains in inertial microchannel flows. Microfluidics and Nanofluidics, 2017, 21, 1.                                                                             | 2.2 | 35        |
| 3  | Analysis of flow induced by temperature fields in ratchet-like microchannels by Direct Simulation<br>Monte Carlo. International Journal of Heat and Mass Transfer, 2016, 99, 672-680. | 4.8 | 34        |
| 4  | Miniaturization of fluorescence sensing in optofluidic devices. Microfluidics and Nanofluidics, 2020, 24, 1.                                                                          | 2.2 | 31        |
| 5  | On the modelling of the switching mechanisms of a Coanda fluidic oscillator. Sensors and Actuators<br>A: Physical, 2019, 299, 111618.                                                 | 4.1 | 30        |
| 6  | Inertial lateral migration and self-assembly of particles in bidisperse suspensions in microchannel flows. Microfluidics and Nanofluidics, 2019, 23, 1.                               | 2.2 | 25        |
| 7  | Numerical and Experimental Analysis of Monostable Mini- and Micro-Oscillators. Heat Transfer<br>Engineering, 2009, 30, 121-129.                                                       | 1.9 | 23        |
| 8  | Sub-ppb Level Detection of BTEX Gaseous Mixtures with a Compact Prototype GC Equipped with a Preconcentration Unit. Micromachines, 2019, 10, 187.                                     | 2.9 | 20        |
| 9  | Liquid bridge instability applied to microfluidics. Microfluidics and Nanofluidics, 2005, 1, 336-345.                                                                                 | 2.2 | 18        |
| 10 | Numerical design of a Knudsen pump with curved channels operating in the slip flow regime. Heat and<br>Mass Transfer, 2014, 50, 1065-1080.                                            | 2.1 | 18        |
| 11 | Numerical study of thermal creep flow between two ratchet surfaces. Vacuum, 2014, 109, 294-301.                                                                                       | 3.5 | 17        |
| 12 | Transport of Non-Spherical Particles in Square Microchannel Flows: A Review. Micromachines, 2021, 12, 277.                                                                            | 2.9 | 17        |
| 13 | Computational investigation and parametrization of the pumping effect in temperature-driven flows through long tapered channels. Microfluidics and Nanofluidics, 2017, 21, 1.         | 2.2 | 15        |
| 14 | Micro molecular tagging velocimetry for analysis of gas flows in mini and micro systems.<br>Microsystem Technologies, 2015, 21, 527-537.                                              | 2.0 | 14        |
| 15 | Design Guidelines for Thermally Driven Micropumps of Different Architectures Based on Target<br>Applications via Kinetic Modeling and Simulations. Micromachines, 2019, 10, 249.      | 2.9 | 13        |
| 16 | A time-dependent method for the measurement of mass flow rate of gases in microchannels.<br>International Journal of Heat and Mass Transfer, 2018, 120, 422-434.                      | 4.8 | 11        |
| 17 | Inertial Migration of Neutrally Buoyant Spherical Particles in Square Channels at Moderate and High Reynolds Numbers. Micromachines, 2021, 12, 198.                                   | 2.9 | 9         |
| 18 | Molecular tagging velocimetry for confined rarefied gas flows: Phosphorescence emission measurements at low pressure. Experimental Thermal and Fluid Science, 2018, 99, 510-524.      | 2.7 | 8         |

Lucien Baldas

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Optofluidic Formaldehyde Sensing: Towards On-Chip Integration. Micromachines, 2020, 11, 673.                                                                                                           | 2.9 | 6         |
| 20 | Velocity Measurements in Channel Gas Flows in the Slip Regime by means of Molecular Tagging<br>Velocimetry. Micromachines, 2020, 11, 374.                                                              | 2.9 | 6         |
| 21 | Experimental and Numerical Study of the Frequency Response of a Fluidic Oscillator for Active Flow Control. , 2016, , .                                                                                |     | 5         |
| 22 | Thermally driven pumps and diodes in multistage assemblies consisting of microchannels with converging, diverging and uniform rectangular cross sections. Microfluidics and Nanofluidics, 2020, 24, 1. | 2.2 | 5         |
| 23 | Prototyping a Microfluidic Sensor for Real-Time Detection of Airborne Formaldehyde. International<br>Journal of Chemical Engineering and Applications (IJCEA), 2020, 11, 23-28.                        | 0.3 | 5         |
| 24 | Experimental Characterization of Sub-Millimetric Fluidic Actuators: Application to Boundary Layer Separation Control. Experimental Heat Transfer, 2009, 23, 4-26.                                      | 3.2 | 4         |
| 25 | Numerical and Experimental Analysis of Monostable Mini- and Micro-Oscillators. , 2007, , 717.                                                                                                          |     | 3         |
| 26 | Numerical analysis of thermal creep flow in curved channels for designing a prototype of Knudsen micropump. Journal of Physics: Conference Series, 2012, 362, 012004.                                  | 0.4 | 3         |
| 27 | Analysis of Gaseous Flows in Minichannels by Molecular Tagging Velocimetry. , 2012, , .                                                                                                                |     | 3         |
| 28 | Convection forcée de liquides en régime laminaire dans des micro-canaux en silicium. Houille Blanche,<br>2006, 92, 20-25.                                                                              | 0.3 | 2         |
| 29 | Behavior of a Mini Synthetic Jet in a Transverse Wall Flow: Experimental and Numerical Study. , 2007, , .                                                                                              |     | 1         |
| 30 | Quantitative measurement of gas pressure drop along T-shaped micro channels by interferometry.<br>Journal of Physics: Conference Series, 2012, 362, 012032.                                            | 0.4 | 1         |
| 31 | Analyse d'écoulements liquides ou gazeux en micro-conduites : découplage des incertitudes<br>expérimentales. Houille Blanche, 2003, 89, 104-110.                                                       | 0.3 | 1         |
| 32 | Influence of Concentration and Number of Image Pairs in μ-PIV Experiments. , 2007, , .                                                                                                                 |     | 1         |
| 33 | Jet impingement cooling using fluidic oscillators: an experimental study. Journal of Physics:<br>Conference Series, 2021, 2116, 012028.                                                                | 0.4 | 1         |
| 34 | ContrÃ1e actif en aérodynamique au moyen de micro actionneurs fluidiques. Houille Blanche, 2007, 93,<br>110-116.                                                                                       | 0.3 | 0         |
| 35 | Coalescence instable lors du mélange de microgouttes aqueuses suspendues dans de l'huile silicone.<br>Houille Blanche, 2007, 93, 104-109.                                                              | 0.3 | 0         |
| 36 | Gas Mass Flow Rate Measurement in T-Shaped Microchannels in Slip Flow Regime. , 2011, , .                                                                                                              |     | 0         |

Lucien Baldas

| #  | Article                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Numerical Simulation of Thermal Transpiration in the Slip Flow Regime With Curved Walls. , 2012, , .                                             |     | 0         |
| 38 | 1st European Conference on Gas Micro Flows (GasMems 2012). Journal of Physics: Conference Series, 2012, 362, 011001.                             | 0.4 | 0         |
| 39 | Editorial for the Special Issue on Gas Flows in Microsystems. Micromachines, 2019, 10, 494.                                                      | 2.9 | 0         |
| 40 | Editorial for the Special Issue "Selected Papers from the ISTEGIM'19—Thermal Effects in Gas Flow in<br>Microscale― Micromachines, 2020, 11, 879. | 2.9 | 0         |
| 41 | Etude numérique de microdiodes de type convergent/divergent. Houille Blanche, 2003, 89, 43-48.                                                   | 0.3 | 0         |
| 42 | Effets de la double couche électrique sur un écoulement de Poiseuille. Houille Blanche, 2006, 92,<br>47-52.                                      | 0.3 | 0         |
| 43 | Wind-tunnel experiments and separation control of a NACA4412 with 25â—< sweep at high Reynolds numbers. , 2022, , .                              |     | 0         |