
Arnaud Béduneau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1233790/publications.pdf Version: 2024-02-01

Αρναμό Βἆωσινεαμ

#	Article	IF	CITATIONS
1	Active targeting of brain tumors using nanocarriers. Biomaterials, 2007, 28, 4947-4967.	5.7	400
2	A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 290-298.	2.0	154
3	Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab' fragments. Biomaterials, 2007, 28, 4978-4990.	5.7	143
4	Facilitated Monocyte-Macrophage Uptake and Tissue Distribution of Superparmagnetic Iron-Oxide Nanoparticles. PLoS ONE, 2009, 4, e4343.	1.1	116
5	Brain targeting using novel lipid nanovectors. Journal of Controlled Release, 2008, 126, 44-49.	4.8	95
6	Surfactant dependent toxicity of lipid nanocapsules in HaCaT cells. International Journal of Pharmaceutics, 2011, 411, 136-141.	2.6	80
7	Nanoparticles enhance therapeutic outcome in inflamed skin therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 151-157.	2.0	76
8	Lectin-decorated nanoparticles enhance binding to the inflamed tissue in experimental colitis. Journal of Controlled Release, 2014, 188, 9-17.	4.8	76
9	Delivery of P-glycoprotein substrates using chemosensitizers and nanotechnology for selective and efficient therapeutic outcomes. Journal of Controlled Release, 2012, 161, 50-61.	4.8	75
10	Pegylated Nanocapsules Produced by an Organic Solvent-Free Method: Evaluation of their Stealth Properties. Pharmaceutical Research, 2006, 23, 2190-2199.	1.7	67
11	Nanoparticle-based clodronate delivery mitigates murine experimental colitis. Journal of Controlled Release, 2012, 160, 659-665.	4.8	56
12	Salting-Out Effect Induced by Temperature Cycling on a Water/Nonionic Surfactant/Oil System. Journal of Physical Chemistry B, 2007, 111, 3651-3657.	1.2	53
13	Surface-Charge-Dependent Nanoparticles Accumulation in Inflamed Skin. Journal of Pharmaceutical Sciences, 2012, 101, 4231-4239.	1.6	49
14	Size dependent skin penetration of nanoparticles in murine and porcine dermatitis models. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 100, 101-108.	2.0	46
15	Coadministration of P-Glycoprotein Modulators on Loperamide Pharmacokinetics and Brain Distribution. Drug Metabolism and Disposition, 2014, 42, 700-706.	1.7	42
16	Stability of fluorescent labels in PLGA polymeric nanoparticles: Quantum dots versus organic dyes. International Journal of Pharmaceutics, 2015, 494, 471-478.	2.6	36
17	Bioadhesive pellets increase local 5-aminosalicylic acid concentration in experimental colitis. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 379-385.	2.0	35
18	Influence of nanoparticles on liver tissue and hepatic functions: A review. Toxicology, 2020, 430, 152344.	2.0	32

Arnaud Béduneau

#	Article	IF	CITATIONS
19	Small silica nanoparticles transiently modulate the intestinal permeability by actin cytoskeleton disruption in both Caco-2 and Caco-2/HT29-MTX models. Archives of Toxicology, 2020, 94, 1191-1202.	1.9	32
20	Biorelevant media resistant co-culture model mimicking permeability of human intestine. International Journal of Pharmaceutics, 2015, 481, 27-36.	2.6	30
21	Surfactant-dependence of nanoparticle treatment in murine experimental colitis. Journal of Controlled Release, 2013, 172, 62-68.	4.8	27
22	Oral insulin delivery in rats by nanoparticles prepared with non-toxic solvents. International Journal of Pharmaceutics, 2013, 443, 169-174.	2.6	25
23	Nanoparticle-based delivery enhances anti-inflammatory effect of low molecular weight heparin in experimental ulcerative colitis. Drug Delivery, 2017, 24, 811-817.	2.5	24
24	A nanoparticle-based approach to improve the outcome of cancer active immunotherapy with lipopolysaccharides. Drug Delivery, 2018, 25, 1414-1425.	2.5	23
25	Anti-Inflammatory Activity of Chitosan and 5-Amino Salicylic Acid Combinations in Experimental Colitis. Pharmaceutics, 2020, 12, 1038.	2.0	20
26	Colonic delivery of carboxyfluorescein by pH-sensitive microspheres in experimental colitis. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 76, 290-295.	2.0	18
27	Crosslinked Fibroin Nanoparticles: Investigations on Biostability, Cytotoxicity, and Cellular Internalization. Pharmaceuticals, 2020, 13, 86.	1.7	15
28	lon milling coupled field emission scanning electron microscopy reveals current misunderstanding of morphology of polymeric nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 56-61.	2.0	14
29	In-vitro investigation regarding the effects of Gelucire ® 44/14 and Labrasol® ALF on the secretory intestinal transport of P-gp substrates. International Journal of Pharmaceutics, 2016, 515, 293-299.	2.6	14
30	Interspecies differences in the cytochrome P450 activity of hepatocytes exposed to PLGA and silica nanoparticles: an in vitro and in vivo investigation. Nanoscale, 2018, 10, 5171-5181.	2.8	14
31	pH-sensitive microparticles prepared by an oil/water emulsification method using n-butanol. International Journal of Pharmaceutics, 2009, 375, 61-66.	2.6	13
32	Nanoparticle Targeting to Inflamed Tissues of the Gastrointestinal Tract. Current Drug Delivery, 2013, 10, 9-17.	0.8	12
33	Liposomes Coloaded with Elacridar and Tariquidar To Modulate the P-Glycoprotein at the Blood–Brain Barrier. Molecular Pharmaceutics, 2015, 12, 3829-3838.	2.3	10
34	Characterization and biodistribution of Au nanoparticles loaded in PLGA nanocarriers using an original encapsulation process. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111875.	2.5	10
35	Toxicity assessment of nanoparticles in contact with the skin. Journal of Nanoparticle Research, 2022, 24, .	0.8	10
36	A "drug cocktail―delivered by microspheres for the local treatment of rat glioblastoma. Journal of Microencapsulation, 2013, 30, 667-673.	1.2	8

Arnaud Béduneau

#	Article	IF	CITATIONS
37	Anti-inflammatory effects of acacia and guar gum in 5-amino salicylic acid formulations in experimental colitis. International Journal of Pharmaceutics: X, 2021, 3, 100080.	1.2	8
38	Investigation of the spontaneous nanoemulsification process with medium- and long-chain triglycerides. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111432.	2.5	7
39	Adalimumab Decorated Nanoparticles Enhance Antibody Stability and Therapeutic Outcome in Epithelial Colitis Targeting. Pharmaceutics, 2022, 14, 352.	2.0	5
40	Nanosphere-shaped ammonio methacrylate copolymers: converting a pharmaceutical inactive ingredient to efficient therapeutics for experimental colitis. Nanoscale, 2020, 12, 9590-9602.	2.8	4
41	Size effect and mucus role on the intestinal toxicity of the E551 food additive and engineered silica nanoparticles. Nanotoxicology, 2022, 16, 165-182.	1.6	4
42	Triterpenoid Saponins from the Caryophyllaceae Family Modulate the Efflux Activity of the P-Glycoprotein in an In Vitro Model of Intestinal Barrier. Planta Medica, 2016, 82, 1553-1557.	0.7	3
43	Hyaluronic Acid Increases Anti-Inflammatory Efficacy of Rectal 5-Amino Salicylic Acid Administration in a Murine Colitis Model. Biomolecules and Therapeutics, 2021, 29, 536-544.	1.1	3
44	Amelioration of murine experimental colitis using biocompatible cyclosporine A lipid carriers. Drug Delivery and Translational Research, 2021, 11, 1301-1308.	3.0	2