
Sergio Tanganelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1233482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study of GPCR Homo- and Heteroreceptor Complexes in Specific Neuronal Cell Populations Using the In Situ Proximity Ligation Assay. Neuromethods, 2021, , 117-134.	0.2	4
2	Acute cocaine treatment enhances the antagonistic allosteric adenosine A2A-dopamine D2 receptor–receptor interactions in rat dorsal striatum without increasing significantly extracellular dopamine levels. Pharmacological Reports, 2020, 72, 332-339.	1.5	7
3	Multiple Adenosine-Dopamine (A2A-D2 Like) Heteroreceptor Complexes in the Brain and Their Role in Schizophrenia. Cells, 2020, 9, 1077.	1.8	18
4	Acute Cocaine Enhances Dopamine D2R Recognition and Signaling and Counteracts D2R Internalization in Sigma1R-D2R Heteroreceptor Complexes. Molecular Neurobiology, 2019, 56, 7045-7055.	1.9	11
5	Analysis and Quantification of GPCR Allosteric Receptor–Receptor Interactions Using Radioligand Binding Assays: The A2AR-D2R Heteroreceptor Complex Example. Neuromethods, 2018, , 1-14.	0.2	0
6	Brain Dopamine Transmission in Health and Parkinson's Disease: Modulation of Synaptic Transmission and Plasticity Through Volume Transmission and Dopamine Heteroreceptors. Frontiers in Synaptic Neuroscience, 2018, 10, 20.	1.3	43
7	Detection, Analysis, and Quantification of GPCR Homo- and Heteroreceptor Complexes in Specific Neuronal Cell Populations Using the In Situ Proximity Ligation Assay. Neuromethods, 2018, , 299-315.	0.2	3
8	Use of Superfused Synaptosomes to Understand the Role of Receptor–Receptor Interactions as Integrative Mechanisms in Nerve Terminals from Selected Brain Region. Neuromethods, 2018, , 41-55.	0.2	1
9	In Vivo Microdialysis Technique Applications to Understand the Contribution of Receptor–Receptor Interactions to the Central Nervous System Signaling. Neuromethods, 2018, , 91-107.	0.2	0
10	Long-lasting alterations of hippocampal GABAergic neurotransmission in adult rats following perinatal Δ9-THC exposure. Neurobiology of Learning and Memory, 2017, 139, 135-143.	1.0	29
11	Cocaine modulates allosteric D2-σ1 receptor-receptor interactions on dopamine and glutamate nerve terminals from rat striatum. Cellular Signalling, 2017, 40, 116-124.	1.7	21
12	Palmitoylethanolamide Blunts Amyloid-β42-Induced Astrocyte Activation and Improves Neuronal Survival in Primary Mouse Cortical Astrocyte-Neuron Co-Cultures. Journal of Alzheimer's Disease, 2017, 61, 389-399.	1.2	22
13	Understanding the Role of GPCR Heteroreceptor Complexes in Modulating the Brain Networks in Health and Disease. Frontiers in Cellular Neuroscience, 2017, 11, 37.	1.8	110
14	Understanding the Functional Plasticity in Neural Networks of the Basal Ganglia in Cocaine Use Disorder: A Role for Allosteric Receptor-Receptor Interactions in A2A-D2 Heteroreceptor Complexes. Neural Plasticity, 2016, 2016, 1-12.	1.0	28
15	Functional role of striatal A2A, D2, and <scp>mG</scp> lu5 receptor interactions in regulating striatopallidal <scp>GABA</scp> neuronal transmission. Journal of Neurochemistry, 2016, 138, 254-264.	2.1	42
16	GET73 Prevents Ethanol-Induced Neurotoxicity in Primary Cultures of Rat Hippocampal Neurons. Alcohol and Alcoholism, 2016, 51, 128-135.	0.9	24
17	Multiple D2 heteroreceptor complexes: new targets for treatment of schizophrenia. Therapeutic Advances in Psychopharmacology, 2016, 6, 77-94.	1.2	51
18	Differential Effects of Palmitoylethanolamide against Amyloid-Î ² Induced Toxicity in Cortical Neuronal and Astrocytic Primary Cultures from Wild-Type and 3xTg-AD Mice. Journal of Alzheimer's Disease, 2015, 46, 407-421	1.2	26

#	Article	IF	CITATIONS
19	Editorial (Thematic Issue: Understanding the Role of Heteroreceptor Complexes in the Central) Tj ETQq1 1 0.78	34314.rgBT 0.7	Oyerlock 10
20	Diversity and Bias through Receptorââ,¬â€œReceptor Interactions in GPCR Heteroreceptor Complexes. Focus on Examples from Dopamine D2 Receptor Heteromerization. Frontiers in Endocrinology, 2014, 5, 71.	1.5	44
21	Endogenous kynurenic acid regulates extracellular GABA levels in the rat prefrontal cortex. Neuropharmacology, 2014, 82, 11-18.	2.0	56
22	Dopamine D2 heteroreceptor complexes and their receptor–receptor interactions in ventral striatum. Progress in Brain Research, 2014, 211, 113-139.	0.9	37
23	Adenosine A2A-D2 Receptor-Receptor Interactions in Putative Heteromers in the Regulation of the Striato-Pallidal GABA Pathway: Possible Relevance for Parkinson's Disease and its Treatment. Current Protein and Peptide Science, 2014, 15, 673-680.	0.7	20
24	Neurotensin NTS1-Dopamine D2 Receptor-Receptor Interactions in Putative Receptor Heteromers: Relevance for Parkinson's Disease and Schizophrenia. Current Protein and Peptide Science, 2014, 15, 681-690.	0.7	22
25	Dopamine D2 receptor signaling dynamics of dopamine D2-neurotensin 1 receptor heteromers. Biochemical and Biophysical Research Communications, 2013, 435, 140-146.	1.0	44
26	Understanding the balance and integration of volume and synaptic transmission. Relevance for psychiatry. Neurology Psychiatry and Brain Research, 2013, 19, 141-158.	2.0	17
27	Kynurenic acid, by targeting α7 nicotinic acetylcholine receptors, modulates extracellular <scp>GABA</scp> levels in the rat striatum <i>in vivo</i> . European Journal of Neuroscience, 2013, 37, 1470-1477.	1.2	54
28	GET73 increases rat extracellular hippocampal CA1 GABA levels through a possible involvement of local mGlu5 receptor. Synapse, 2013, 67, 678-691.	0.6	14
29	The New Compound GET73, N-[(4-trifluoromethyl)benzyl]4-methoxybutyramide, Regulates Hippocampal Aminoacidergic Transmission Possibly Via an Allosteric Modulation of mGlu5 Receptor. Behavioural Evidence of its "Anti-Alcohol―and Anxiolytic Properties. Current Medicinal Chemistry, 2013, 20, 3339-3357.	1.2	15
30	The Vigilance Promoting Drug Modafinil Modulates Serotonin Transmission in the Rat Prefrontal Cortex and Dorsal Raphe Nucleus. Possible Relevance for Its Postulated Antidepressant Activity. Mini-Reviews in Medicinal Chemistry, 2013, 13, 478-492.	1.1	11
31	Extrasynaptic Neurotransmission in the Modulation of Brain Function. Focus on the Striatal Neuronal–Glial Networks. Frontiers in Physiology, 2012, 3, 136.	1.3	67
32	GPCR Heteromers and their Allosteric Receptor-Receptor Interactions. Current Medicinal Chemistry, 2012, 19, 356-363.	1.2	83
33	Relevance of Dopamine D2/Neurotensin NTS1 and NMDA/Neurotensin NTS1 Receptor Interaction in Psychiatric and Neurodegenerative Disorders. Current Medicinal Chemistry, 2012, 19, 304-316.	1.2	23
34	Editorial [Hot Topic: Relevance of Integration at the Membrane Level of Receptor-Receptor Interactions in Neurodegenerative Diseases and Drug Addiction (Guest Editor: Sergio Tanganelli)]. Current Medicinal Chemistry, 2012, 19, 303-303.	1.2	0
35	Prenatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin produces alterations in cortical neuron development and a long-term dysfunction of glutamate transmission in rat cerebral cortex. Neurochemistry International, 2012, 61, 759-766.	1.9	13
36	A Novel Mechanism of Cocaine to Enhance Dopamine D2-Like Receptor Mediated Neurochemical and Behavioral Effects. An In Vivo and In Vitro Study. Neuropsychopharmacology, 2012, 37, 1856-1866.	2.8	28

#	Article	IF	CITATIONS
37	A2A/D2 receptor heteromerization in a model of Parkinson's disease. Focus on striatal aminoacidergic signaling. Brain Research, 2012, 1476, 96-107.	1.1	19
38	Striatal NTS ₁ , dopamine D ₂ and NMDA receptor regulation of pallidal GABA and glutamate release – a dualâ€probe microdialysis study in the intranigral 6â€hydroxydopamine unilaterally lesioned rat. European Journal of Neuroscience, 2012, 35, 207-220.	1.2	19
39	Unbalance of CB1 receptors expressed in GABAergic and glutamatergic neurons in a transgenic mouse model of Huntington's disease. Neurobiology of Disease, 2012, 45, 983-991.	2.1	41
40	GET73 modulates rat hippocampal glutamate transmission: evidence for a functional interaction with mGluR5. Pharmacological Reports, 2011, 63, 1359-1371.	1.5	7
41	Neurotensin regulates cortical glutamate transmission by modulating Nâ€methylâ€Dâ€aspartate receptor functional activity: An in vivo microdialysis study. Journal of Neuroscience Research, 2011, 89, 1618-1626.	1.3	16
42	Nanomolar concentrations of cocaine enhance D2-like agonist-induced inhibition of the K+-evoked [3H]-dopamine efflux from rat striatal synaptosomes: a novel action of cocaine. Journal of Neural Transmission, 2010, 117, 593-597.	1.4	25
43	Adenosine–Dopamine Interactions in the Pathophysiology and Treatment of CNS Disorders. CNS Neuroscience and Therapeutics, 2010, 16, e18-42.	1.9	141
44	Cannabinoid CB ₁ and Cholecystokinin CCK ₂ Receptors Modulate, in an Opposing Way, Electrically Evoked [³ H]GABA Efflux from Rat Cerebral Cortex Cell Cultures: Possible Relevance for Cortical GABA Transmission and Anxiety. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 708-717.	1.3	7
45	Emerging Evidence for Neurotensin Receptor 1 Antagonists as Novel Pharmaceutics in Neurodegenerative Disorders. Mini-Reviews in Medicinal Chemistry, 2009, 9, 1429-1438.	1.1	21
46	Integrated signaling in heterodimers and receptor mosaics of different types of GPCRs of the forebrain: relevance for schizophrenia. Journal of Neural Transmission, 2009, 116, 923-939.	1.4	42
47	Short- and long-term consequences of prenatal exposure to the cannabinoid agonist WIN55,212-2 on rat glutamate transmission and cognitive functions. Journal of Neural Transmission, 2009, 116, 1017-1027.	1.4	29
48	Developmental exposure to methylmercury elicits early cell death in the cerebral cortex and longâ€ŧerm memory deficits in the rat. International Journal of Developmental Neuroscience, 2009, 27, 165-174.	0.7	38
49	Brain uptake of an anti-ischemic agent by nasal administration of microparticles. Journal of Pharmaceutical Sciences, 2008, 97, 4889-4903.	1.6	62
50	Efficient synthesis and biological evaluation of two modafinil analogues. Bioorganic and Medicinal Chemistry, 2008, 16, 9904-9910.	1.4	17
51	Neurotensin receptors as modulators of glutamatergic transmission. Brain Research Reviews, 2008, 58, 365-373.	9.1	37
52	Receptor–receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. Brain Research Reviews, 2008, 58, 415-452.	9.1	192
53	Enhanced striatal glutamate release after the administration of rimonabant to 6-hydroxydopamine-lesioned rats. Neuroscience Letters, 2008, 438, 10-13.	1.0	35
54	Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis. Neuropharmacology, 2008, 54, 815-823.	2.0	154

#	Article	IF	CITATIONS
55	Neurotensin Receptor Involvement in the Rise of Extracellular Glutamate Levels and Apoptotic Nerve Cell Death in Primary Cortical Cultures after Oxygen and Glucose Deprivation. Cerebral Cortex, 2008, 18, 1748-1757.	1.6	28
56	The Nigro-Striatal DA Neurons and Mechanisms of Their Degeneration in Parkinson's Disease. , 2008, , 121-144.		1
57	Neurotensin receptor mechanisms and its modulation of glutamate transmission in the brain. Progress in Neurobiology, 2007, 83, 92-109.	2.8	49
58	Mesolimbic dopamine and cortico-accumbens glutamate afferents as major targets for the regulation of the ventral striato-pallidal GABA pathways by neurotensin peptides. Brain Research Reviews, 2007, 55, 144-154.	9.1	24
59	Receptor–receptor interactions as studied with microdialysis. Focus on NTR/D2 interactions in the basal ganglia. Journal of Neural Transmission, 2007, 114, 105-113.	1.4	24
60	Intramembrane receptor–receptor interactions: a novel principle in molecular medicine. Journal of Neural Transmission, 2007, 114, 49-75.	1.4	113
61	Experimental studies and theoretical aspects on A2A/D2 receptor interactions in a model of Parkinson's disease. Relevance for L-dopa induced dyskinesias. Journal of the Neurological Sciences, 2006, 248, 16-22.	0.3	44
62	Prenatal exposure to the cannabinoid receptor agonist WIN 55,212-2 and carbon monoxide reduces extracellular glutamate levels in primary rat cerebral cortex cell cultures. Neurochemistry International, 2006, 49, 568-576.	1.9	13
63	Ascorbic and 6-Br-ascorbic acid conjugates as a tool to increase the therapeutic effects of potentially central active drugs. European Journal of Pharmaceutical Sciences, 2005, 24, 259-269.	1.9	33
64	Modafinil enhances the increase of extracellular serotonin levels induced by the antidepressant drugs fluoxetine and imipramine: A dual probe microdialysis study in awake rat. Synapse, 2005, 55, 230-241.	0.6	38
65	Effects of sarizotan on the corticostriatal glutamate pathways. Synapse, 2005, 58, 193-199.	0.6	69
66	Prenatal Exposure to the CB1 Receptor Agonist WIN 55,212-2 Causes Learning Disruption Associated with Impaired Cortical NMDA Receptor Function and Emotional Reactivity Changes in Rat Offspring. Cerebral Cortex, 2005, 15, 2013-2020.	1.6	105
67	Transporter-Mediated Effects of Diclofenamic Acid and its Ascorbyl Pro-Drug in the in Vivo Neurotropic Activity of Ascorbyl Nipecotic Acid Conjugate. Journal of Pharmaceutical Sciences, 2004, 93, 78-85.	1.6	21
68	Striatal plasticity at the network level. Focus on adenosine A2A and D2 interactions in models of Parkinson's Disease. Parkinsonism and Related Disorders, 2004, 10, 273-280.	1.1	72
69	Long-term effects on cortical glutamate release induced by prenatal exposure to the cannabinoid receptor agonist (r)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinyl-methyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmetha an in vivo microdialvsis study in the awake rat. Neuroscience, 2004, 124, 367-375.	1.1 none:	43
70	Neurotensin Enhances Endogenous Extracellular Glutamate Levels in Primary Cultures of Rat Cortical Neurons: Involvement of Neurotensin Receptor in NMDA Induced Excitotoxicity. Cerebral Cortex, 2004, 14, 466-473.	1.6	34
71	Selective γ-hydroxybutyric acid receptor ligands increase extracellular glutamate in the hippocampus, but fail to activate G protein and to produce the sedative/hypnotic effect of γ-hydroxybutyric acid. Journal of Neurochemistry, 2003, 87, 722-732.	2.1	65
72	Prenatal exposure to a cannabinoid agonist produces memory deficits linked to dysfunction in hippocampal long-term potentiation and glutamate release. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4915-4920.	3.3	176

#	Article	IF	CITATIONS
73	Neurotensin-induced modulation of dopamine D2 receptors and their function in rat striatum: Counteraction by a NTR1-like receptor antagonist. NeuroReport, 2002, 13, 763-766.	0.6	36
74	Design, Synthesis and Activity of Ascorbic Acid Prodrugs of Nipecotic, Kynurenic and Diclophenamic Acids, Liable to Increase Neurotropic Activity. Journal of Medicinal Chemistry, 2002, 45, 559-562.	2.9	99
75	î"9-Tetrahydrocannabinol decreases extracellular GABA and increases extracellular glutamate and dopamine levels in the rat prefrontal cortex: an in vivo microdialysis study. Brain Research, 2002, 948, 155-158.	1.1	201
76	Differential enhancement of dialysate serotonin levels in distinct brain regions of the awake rat by modafinil: Possible relevance for wakefulness and depression. Journal of Neuroscience Research, 2002, 68, 107-112.	1.3	55
77	?9-tetrahydrocannabinol increases endogenous extracellular glutamate levels in primary cultures of rat cerebral cortex neurons: Involvement of CB1 receptors. Journal of Neuroscience Research, 2002, 68, 449-453.	1.3	24
78	Neurotensin enhances glutamate excitotoxicity in mesencephalic neurons in primary culture. Journal of Neuroscience Research, 2002, 70, 766-773.	1.3	16
79	Cholecystokinin/dopamine/GABA interactions in the nucleus accumbens: biochemical and functional correlates. Peptides, 2001, 22, 1229-1234.	1.2	32
80	Nigral neurotensin receptor regulation of nigral glutamate and nigroventral thalamic GABA transmission: a dual-probe microdialysis study in intact conscious rat brain. Neuroscience, 2001, 102, 113-120.	1.1	46
81	γ-Hydroxybutyrate modulation of glutamate levels in the hippocampus: an in vivo and in vitro study. Journal of Neurochemistry, 2001, 78, 929-939.	2.1	37
82	Cannabinoid receptor agonist WIN 55,212-2 inhibits rat cortical dialysate ?-aminobutyric acid levels. Journal of Neuroscience Research, 2001, 66, 298-302.	1.3	44
83	Modafinil does not affect serotonin efflux from rat frontal cortex synaptosomes: comparison with known serotonergic drugs. Brain Research, 2001, 894, 307-310.	1.1	11
84	The Cannabinoid Receptor Agonist WIN 55,212-2 Regulates Glutamate Transmission in Rat Cerebral Cortex: an In Vivo and In Vitro Study. Cerebral Cortex, 2001, 11, 728-733.	1.6	77
85	Differential effects of acute and short-term lithium administration on dialysate glutamate and GABA levels in the frontal cortex of the conscious rat. Synapse, 2000, 38, 355-362.	0.6	31
86	Evidence for a nucleus accumbens CCK2 receptor regulation of rat ventral pallidal GABA levels. Life Sciences, 2000, 68, 483-496.	2.0	11
87	Neurotensin increases endogenous glutamate release in rat cortical slices. Life Sciences, 2000, 66, 927-936.	2.0	30
88	Amplification of cortical serotonin release: a further neurochemical action of the vigilance-promoting drug modafinil. Neuropharmacology, 2000, 39, 1974-1983.	2.0	81
89	The Vigilance Promoting Drug Modafinil Increases Extracellular Glutamate Levels in the Medial Preoptic Area and the Posterior Hypothalamus of the Conscious Rat Prevention by Local GABAA Receptor Blockade. Neuropsychopharmacology, 1999, 20, 346-356.	2.8	139
90	The effects of modafinil on striatal, pallidal and nigral GABA and glutamate release in the conscious rat: evidence for a preferential inhibition of striato-pallidal GABA transmission. Neuroscience Letters, 1998, 253, 135-138.	1.0	110

#	Article	IF	CITATIONS
91	The Striatal Neurotensin Receptor Modulates Striatal and Pallidal Glutamate and GABA Release: Functional Evidence for a Pallidal Glutamate–GABA Interaction via the Pallidal–Subthalamic Nucleus Loop. Journal of Neuroscience, 1998, 18, 6977-6989.	1.7	65
92	The antinarcoleptic drug modafinil increases glutamate release in thalamic areas and hippocampus. NeuroReport, 1997, 8, 2883-2887.	0.6	105
93	Modafinil: An antinarcoleptic drug with a different neurochemical profile to d-amphetamine and dopamine uptake blockers. Biological Psychiatry, 1997, 42, 1181-1183.	0.7	128
94	Inhibitory cholinergic control of endogenous GABA release from electrically stimulated cortical slices and K+-depolarized synaptosomes. Neurochemistry International, 1997, 31, 795-800.	1.9	13
95	Differential Effects of Intrastriatal Neurotensin(1-13) and Neurotensin(8-13) on Striatal Dopamine and Pallidal GABA Release. A Dual-probe Microdialysis Study in the Awake Rat. European Journal of Neuroscience, 1997, 9, 1838-1846.	1.2	43
96	Evidence for a differential cholecystokinin-B and -A receptor regulation of gaba release in the rat nucleus accumbens mediated via dopaminergic and cholinergic mechanisms. Neuroscience, 1996, 73, 941-950.	1.1	28
97	The vigilance promoting drug modafinil increases dopamine release in the rat nucleus accumbens via the involvement of a local GABAergic mechanism. European Journal of Pharmacology, 1996, 306, 33-39.	1.7	125
98	The vigilance promoting drug modafinil decreases GABA release in the medial preoptic area and in the posterior hypothalamus of the awake rat: possible involvement of the serotonergic 5-HT3 receptor. Neuroscience Letters, 1996, 220, 5-8.	1.0	103
99	Evidence for an in vivo and in vitro modulation of endogenous cortical GABA release by α-glycerylphosphorylcholine. Neurochemical Research, 1996, 21, 547-552.	1.6	3
100	Neurotensin peptides antagonistically regulate postsynaptic dopamine D2 receptors in rat nucleus accumbens: a receptor binding and microdialysis study. Journal of Neural Transmission, 1995, 102, 125-137.	1.4	48
101	Neurotensin increases endogenous glutamate release in the neostriatum of the awake rat. Synapse, 1995, 20, 362-364.	0.6	39
102	5â€Hydroxytryptamineâ€mediated effects of nicotine on endogenous GABA efflux from guineaâ€pig cortical slices. British Journal of Pharmacology, 1995, 116, 2724-2728.	2.7	14
103	Modafinil and cortical γ-aminobutyric acid outflow. Modulation by 5-hydroxytryptamine neurotoxins. European Journal of Pharmacology, 1995, 273, 63-71.	1.7	60
104	Receptor-Receptor Interactions and Their Relevance for Receptor Diversity. Annals of the New York Academy of Sciences, 1995, 757, 365-376.	1.8	25
105	Facilitation of gaba release by neurotensin is associated with a reduction of dopamine release in rat nucleus accumbens. Neuroscience, 1994, 60, 649-657.	1.1	96
106	6-Hydroxy-dopamine treatment counteracts the reduction of cortical GABA release produced by the vigilance promoting drug modafinil in the awake freely moving guinea-pig. Neuroscience Letters, 1994, 171, 201-204.	1.0	21
107	Evidence for a preventive action of the vigilance-promoting drug modafinil against striatal ischemic injury induced by endothelin-1 in the rat. Experimental Brain Research, 1993, 96, 89-99.	0.7	32
108	Noradrenergic modulation of Î ³ -aminobutyric acid outflow from the human cerebral cortex. Brain Research, 1993, 629, 103-108.	1.1	30

#	Article	IF	CITATIONS
109	Neurotensin and cholecystokinin octapeptide control synergistically dopamine release and dopamine D2 receptor affinity in rat neostriatum. European Journal of Pharmacology, 1993, 230, 159-166.	1.7	26
110	Evidence for a substrate of neuronal plasticity based on pre- and postsynaptic neurotensin-dopamine receptor interactions in the neostriatum Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 5591-5595.	3.3	78
111	Changes in gamma-aminobutyric acid release induced by topical administration of drugs affecting its metabolism and receptors: Studies in freely moving guinea pigs with epidural cups. Neurochemistry International, 1992, 21, 15-20.	1.9	8
112	Intramembrane Interactions between Neurotensin Receptors and Dopamine D2Receptors as a Major Mechanism for the Neuroleptic-like Action of Neurotensin. Annals of the New York Academy of Sciences, 1992, 668, 186-204.	1.8	90
113	The effects of neurotensin on GABA and acetylcholine release in the dorsal striatum of the rat: an in vivo mirodialysis study. Brain Research, 1992, 573, 209-216.	1.1	56
114	Inhibitory effects of the psychoactive drug modafinil on ?-aminobutyric acid outflow from the cerebral cortex of the awake freely moving guinea-pig. Naunyn-Schmiedeberg's Archives of Pharmacology, 1992, 345, 461-5.	1.4	75
115	Evidence for a protective action of the vigilance promoting drug Modafinil on the MPTP-induced degeneration of the nigrostriatal dopamine neurons in the black mouse: an immunocytochemical and biochemical analysis. Experimental Brain Research, 1992, 88, 117-130.	0.7	59
116	Effect of acute and subchronic nicotine treatment on cortical efflux of [³ H]â€ <scp>d</scp> â€aspartate and endogenous GABA in freely moving guineaâ€pigs. British Journal of Pharmacology, 1991, 104, 15-20.	2.7	9
117	Glutamate antagonists prevent morphine withdrawal in mice and guinea pigs. Neuroscience Letters, 1991, 122, 270-272.	1.0	106
118	Involvement of cholecystokinin receptors in the control of striatal dopamine autoreceptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 1990, 342, 300-304.	1.4	17
119	Changes in pituitary-adrenal activity affect the apomorphine- and cholecystokinin-8-induced changes in striatal dopamine release using microdialysis. Journal of Neural Transmission, 1990, 81, 183-194.	1.4	20
120	Changes in pituitary-adrenal activity affect the binding properties of striatal dopamine D-2 receptors but not their modulation by neurotensin and cholecystokinin-8. Neurochemistry International, 1990, 16, 275-280.	1.9	17
121	?1Adrenoreceptpr-Mediated Increase in Acetylcholine Release in Braip Slices During Morphine Tolerance. Journal of Neurochemistry, 1989, 53, 1072-1076.	2.1	13
122	Neurotensin counteracts apomorphine-induced inhibition of dopamine release as studied by microdialysis in rat neostriatum. Brain Research, 1989, 502, 319-324.	1.1	63
123	Chapter 14 Effect of nicotine on the release of acetylcholine and amino acids in the brain. Progress in Brain Research, 1989, 79, 149-155.	0.9	27
124	A simple integrator to process the electroencephalogram of small laboratory animals. Journal of Pharmacological Methods, 1987, 17, 219-229.	0.7	1
125	The modulation of cortical acetylcholine release by GABA, GABA-like drugs and benzodiazepines in freely moving guinea-pigs. Neuropharmacology, 1985, 24, 291-299.	2.0	15
126	Different approaches to study acetylcholine release: endogenous ACh versus tritium efflux. Naunyn-Schmiedeberg's Archives of Pharmacology, 1984, 328, 119-126.	1.4	66

#	Article	IF	CITATIONS
127	Diazepam antagonizes GABA-and muscimol-induced changes of acetylcholine release in slices of guinea-pig cerebral cortex. Naunyn-Schmiedeberg's Archives of Pharmacology, 1983, 324, 34-37.	1.4	9
128	Glycineâ€induced changes in acetylcholine release from guineaâ€pig brain slices. British Journal of Pharmacology, 1983, 79, 623-628.	2.7	12
129	Release of GABA from the guinea-pig neocortex induced by electrical stimulation of the †locus coeruleus' or by norepinephrine. Brain Research, 1982, 232, 216-221.	1.1	19
130	GABA induced changes in acetylcholine release from slices of guinea-pig brain. Naunyn-Schmiedeberg's Archives of Pharmacology, 1982, 318, 253-258.	1.4	46
131	The Release of ?-Aminobutyric Acid, Glutamate, and Acetylcholine from Striatal Slices: A Mass Fragmentographic Study. Journal of Neurochemistry, 1981, 36, 1691-1697.	2.1	37
132	A mass-frammentographic approach to release studies of endogenous GABA, glutamic acid and glutamine "in vitro― Pharmacological Research Communications, 1980, 12, 501-505.	0.2	11
133	Dopamine modulation of acetylcholine release from the guinea-pig brain. European Journal of Pharmacology, 1979, 58, 235-246.	1.7	31
134	Inhibition of acetylcholine outflow from guinea-pig cerebral cortex following locus coeruleus stimulation. Neuroscience Letters, 1979, 14, 97-100.	1.0	25