Peter Raffai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1233335/publications.pdf

Version: 2024-02-01

430442 476904 3,491 34 18 29 citations h-index g-index papers 34 34 34 4757 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	15.6	825
2	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
3	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
4	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
5	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
6	GLADE: A galaxy catalogue for multimessenger searches in the advanced gravitational-wave detector era. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2374-2381.	1.6	129
7	Eccentric Black Hole Gravitational-wave Capture Sources in Galactic Nuclei: Distribution of Binary Parameters. Astrophysical Journal, 2018, 860, 5.	1.6	113
8	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90
9	Long gravitational-wave transients and associated detection strategies for a network of terrestrial interferometers. Physical Review D, $2011,83,\ldots$	1.6	70
10	Bounding the time delay between high-energy neutrinos and gravitational-wave transients from gamma-ray bursts. Astroparticle Physics, 2011, 35, 1-7.	1.9	69
11	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
12	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
13	Accuracy of Estimating Highly Eccentric Binary Black Hole Parameters with Gravitational-wave Detections. Astrophysical Journal, 2018, 855, 34.	1.6	46
14	Parameter Estimation for Gravitational-wave Bursts with the BayesWave Pipeline. Astrophysical Journal, 2017, 839, 15.	1.6	38
15	GLADE+Â: an extended galaxy catalogue for multimessenger searches with advanced gravitational-wave detectors. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1403-1411.	1.6	25
16	First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO. Physical Review Letters, 2017, 118, 151102.	2.9	24
17	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
18	Optimal networks of future gravitational-wave telescopes. Classical and Quantum Gravity, 2013, 30, 155004.	1.5	19

#	Article	IF	CITATIONS
19	Eccentricity distributions of eccentric binary black holes in galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2019, 486, 570-581.	1.6	14
20	Benefits of artificially generated gravity gradients for interferometric gravitational-wave detectors. Classical and Quantum Gravity, 2007, 24, 2217-2229.	1.5	13
21	How to find long narrow-band gravitational wave transients with unknown frequency evolution. Classical and Quantum Gravity, 2007, 24, S457-S468.	1.5	7
22	Opportunity to test non-Newtonian gravity using interferometric sensors with dynamic gravity field generators. Physical Review D, 2011, 84, .	1.6	7
23	Global optimization for future gravitational wave detector sites. Classical and Quantum Gravity, 2015, 32, 105010.	1.5	7
24	A statistical method to search for recoiling supermassive black holes in active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2016, 455, 484-492.	1.6	7
25	Bayesian reconstruction of gravitational-wave signals from binary black holes with nonzero eccentricities. Classical and Quantum Gravity, 2021, 38, 065002.	1.5	7
26	Effects of transients in LIGO suspensions on searches for gravitational waves. Review of Scientific Instruments, 2017, 88, 124501.	0.6	6
27	Concepts and research for future detectors. General Relativity and Gravitation, 2014, 46, 1.	0.7	2
28	A statistical method to detect non-stationarities of gamma-ray burst jets. Monthly Notices of the Royal Astronomical Society, 2019, , .	1.6	2
29	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
30	Interpreting gravitational-wave burst detections: constraining source properties without astrophysical models. Classical and Quantum Gravity, 2020, 37, 105011.	1.5	1
31	Estimation of Blooming Start with the Adaptation of the Unified Model for Three Apricot Cultivars (Prunus armeniaca L.) Based on Long-Term Observations in Hungary (1994–2020). Diversity, 2022, 14, 560.	0.7	1
32	A Statistical Method for Detecting Gravitational Recoils of Supermassive Black Holes in Active Galactic Nuclei. Proceedings of the International Astronomical Union, 2016, 12, 227-230.	0.0	0
33	CONCEPT STUDY OF YUKAWA-LIKE POTENTIAL TESTS USING DYNAMIC GRAVITY-GRADIENTS WITH INTERFEROMETRIC GRAVITATIONAL-WAVE DETECTORS. , 2008, , .		0
34	Statistical search for angular non-stationarities of long gamma-ray burst jets using <i>Swift</i> data. Monthly Notices of the Royal Astronomical Society, 2021, 509, 6179-6182.	1.6	0