
Jan Wesche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12329/publications.pdf Version: 2024-02-01

IAN WESCHE

#	Article	IF	CITATIONS
1	Comparative analysis of ChAdOx1 nCoV-19 and Ad26.COV2.S SARS-CoV-2 vector vaccines. Haematologica, 2022, 107, 947-957.	3.5	37
2	Ex vivo anticoagulants affect human blood platelet biomechanics with implications for high-throughput functional mechanophenotyping. Communications Biology, 2022, 5, 86.	4.4	5
3	αâ€hemolysin of Staphylococcus aureus impairs thrombus formation. Journal of Thrombosis and Haemostasis, 2022, 20, 1464-1475.	3.8	5
4	Divalent magnesium restores cytoskeletal storage lesions in cold-stored platelet concentrates. Scientific Reports, 2022, 12, 6229.	3.3	2
5	Cytoskeleton Dependent Mobility Dynamics of FcγRIIA Facilitates Platelet Haptotaxis and Capture of Opsonized Bacteria. Cells, 2022, 11, 1615.	4.1	3
6	A flow cytometric assay to detect platelet-activating antibodies in VITT after ChAdOx1 nCov-19 vaccination. Blood, 2021, 137, 3656-3659.	1.4	52
7	The platelet proteasome and immunoproteasome are stable in buffyâ€coat derived platelet concentrates for up to 7 days. Transfusion, 2021, 61, 2746-2755.	1.6	2
8	Anti–platelet factor 4 antibodies causing VITT do not cross-react with SARS-CoV-2 spike protein. Blood, 2021, 138, 1269-1277.	1.4	102
9	Insights in ChAdOx1 nCoV-19 vaccine-induced immune thrombotic thrombocytopenia. Blood, 2021, 138, 2256-2268.	1.4	228
10	Polyvalent Immunoglobulin Preparations Inhibit Pneumolysin-Induced Platelet Destruction. Thrombosis and Haemostasis, 2021, , .	3.4	4
11	Pneumolysin induces platelet destruction, not platelet activation, which can be prevented by immunoglobulin preparations in vitro. Blood Advances, 2020, 4, 6315-6326.	5.2	22
12	Label-free on chip quality assessment of cellular blood products using real-time deformability cytometry. Lab on A Chip, 2020, 20, 2306-2316.	6.0	16
13	Secreted Immunomodulatory Proteins of Staphylococcus aureus Activate Platelets and Induce Platelet Aggregation. Thrombosis and Haemostasis, 2018, 47, 745-757.	3.4	27
14	Magnetic Nanoparticle Labeling of Human Platelets from Platelet Concentrates for Recovery and Survival Studies. ACS Applied Materials & Interfaces, 2017, 9, 34666-34673.	8.0	19