
Siegfried Ussar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1232885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Is epiploic fat the dermal fat of the intestine?. Gut, 2022, 71, 2147-2148.	6.1	3
2	Differential effects of lung inflammation on insulin resistance in humans and mice. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2482-2497.	2.7	3
3	Immune Cell Regulation of White Adipose Progenitor Cell Fate. Frontiers in Endocrinology, 2022, 13, 859044.	1.5	5
4	Regulatory networks determining substrate utilization in brown adipocytes. Trends in Endocrinology and Metabolism, 2022, 33, 493-506.	3.1	7
5	L-Serine Supplementation Blunts Fasting-Induced Weight Regain by Increasing Brown Fat Thermogenesis. Nutrients, 2022, 14, 1922.	1.7	5
6	PAT2 regulates vATPase assembly and lysosomal acidification in brown adipocytes. Molecular Metabolism, 2022, 61, 101508.	3.0	3
7	Asc-1 regulates white versus beige adipocyte fate in a subcutaneous stromal cell population. Nature Communications, 2021, 12, 1588.	5.8	17
8	Active integrins regulate white adipose tissue insulin sensitivity and brown fat thermogenesis. Molecular Metabolism, 2021, 45, 101147.	3.0	30
9	Development of an Optimized Clearing Protocol to Examine Adipocyte Subpopulations in White Adipose Tissue. Methods and Protocols, 2021, 4, 39.	0.9	1
10	Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metabolism, 2021, 33, 1155-1170.e10.	7.2	68
11	Identification and characterization of distinct brown adipocyte subtypes in C57BL/6J mice. Life Science Alliance, 2021, 4, e202000924.	1.3	14
12	Age-dependent membrane release and degradation of full-length glycosylphosphatidylinositol-anchored proteins in rats. Mechanisms of Ageing and Development, 2020, 190, 111307.	2.2	9
13	The scaffold protein p62 regulates adaptive thermogenesis through ATF2 nuclear target activation. Nature Communications, 2020, 11, 2306.	5.8	21
14	Targeted pharmacological therapy restores β-cell function for diabetes remission. Nature Metabolism, 2020, 2, 192-209.	5.1	93
15	Gut Microbes Controlling Blood Sugar: No Fire Required!. Cell Metabolism, 2020, 31, 443-444.	7.2	9
16	Identification and characterization of adipose surface epitopes. Biochemical Journal, 2020, 477, 2509-2541.	1.7	9
17	Identification of Cyanobacterial Strains with Potential for the Treatment of Obesity-Related Co-Morbidities by Bioactivity, Toxicity Evaluation and Metabolite Profiling. Marine Drugs, 2019, 17, 280.	2.2	18
18	Developmental and functional heterogeneity of white adipocytes within a single fat depot. EMBO Journal, 2019, 38, .	3.5	83

SIEGFRIED USSAR

#	Article	IF	CITATIONS
19	Heterogeneity of adipose tissue in development and metabolic function. Journal of Experimental Biology, 2018, 221, .	0.8	147
20	Diet, Genetics, and the Gut Microbiome Drive Dynamic Changes in Plasma Metabolites. Cell Reports, 2018, 22, 3072-3086.	2.9	159
21	A history of obesity leaves an inflammatory fingerprint in liver and adipose tissue. International Journal of Obesity, 2018, 42, 507-517.	1.6	59
22	Chronic d-serine supplementation impairs insulin secretion. Molecular Metabolism, 2018, 16, 191-202.	3.0	29
23	Loss of periostin occurs in aging adipose tissue of mice and its genetic ablation impairs adipose tissue lipid metabolism. Aging Cell, 2018, 17, e12810.	3.0	29
24	Regulation of Glucose Uptake and Enteroendocrine Function by the Intestinal Epithelial Insulin Receptor. Diabetes, 2017, 66, 886-896.	0.3	32
25	Response to Comment on Ussar et al. Regulation of Glucose Uptake and Enteroendocrine Function by the Intestinal Epithelial Insulin Receptor. Diabetes 2017;66:886–896. Diabetes, 2017, 66, e6-e6.	0.3	1
26	Insulin resistance in vascular endothelial cells promotes intestinal tumour formation. Oncogene, 2017, 36, 4987-4996.	2.6	25
27	<i>Tbx15</i> Defines a Glycolytic Subpopulation and White Adipocyte Heterogeneity. Diabetes, 2017, 66, 2822-2829.	0.3	37
28	Extracellular calcium modulates brown adipocyte differentiation and identity. Scientific Reports, 2017, 7, 8888.	1.6	27
29	Insulin receptor trafficking steers insulin action. Molecular Metabolism, 2016, 5, 253-254.	3.0	0
30	Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome. Molecular Metabolism, 2016, 5, 795-803.	3.0	132
31	Antibiotic effects on gut microbiota and metabolism are host dependent. Journal of Clinical Investigation, 2016, 126, 4430-4443.	3.9	130
32	Tbx15 controls skeletal muscle fibre-type determination and muscle metabolism. Nature Communications, 2015, 6, 8054.	5.8	76
33	Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome. Cell Metabolism, 2015, 22, 516-530.	7.2	433
34	ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes. Science Translational Medicine, 2014, 6, 247ra103.	5.8	169
35	Kindlin-1 controls Wnt and TGF-β availability to regulate cutaneous stem cell proliferation. Nature Medicine, 2014, 20, 350-359.	15.2	112
36	[Br]eaking FAt. Cell, 2014, 159, 238-240.	13.5	8

SIEGFRIED USSAR

#	Article	IF	CITATIONS
37	Linking maternal obesity to early insulin resistance. Molecular Metabolism, 2014, 3, 219-220.	3.0	1
38	Sirt3 Regulates Metabolic Flexibility of Skeletal Muscle Through Reversible Enzymatic Deacetylation. Diabetes, 2013, 62, 3404-3417.	0.3	234
39	Lessons on Conditional Gene Targeting in Mouse Adipose Tissue. Diabetes, 2013, 62, 864-874.	0.3	281
40	Leptin regulation of Hsp60 impacts hypothalamic insulin signaling. Journal of Clinical Investigation, 2013, 123, 4667-4680.	3.9	101
41	Glypican-4 Enhances Insulin Signaling via Interaction With the Insulin Receptor and Serves as a Novel Adipokine. Diabetes, 2012, 61, 2289-2298.	0.3	85
42	Receptor Antibodies as Novel Therapeutics for Diabetes. Science Translational Medicine, 2011, 3, 113ps47.	5.8	15
43	Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nature Medicine, 2009, 15, 306-312.	15.2	371
44	Loss-of-Function FERMT1 Mutations in Kindler Syndrome Implicate a Role for Fermitin Family Homolog-1 in Integrin Activation. American Journal of Pathology, 2009, 175, 1431-1441.	1.9	34
45	Colocalization of Kindlin-1, Kindlin-2, and Migfilin at Keratinocyte Focal Adhesion and Relevance to the Pathophysiology of Kindler Syndrome. Journal of Investigative Dermatology, 2008, 128, 2156-2165.	0.3	79
46	Kindlin-3 is essential for integrin activation and platelet aggregation. Nature Medicine, 2008, 14, 325-330.	15.2	599
47	C-terminally truncated kindlin-1 leads to abnormal adhesion and migration of keratinocytes. British Journal of Dermatology, 2008, 159, ???-???.	1.4	19
48	SILAC Mouse for Quantitative Proteomics Uncovers Kindlin-3 as an Essential Factor for Red Blood Cell Function. Cell, 2008, 134, 353-364.	13.5	631
49	Kindlin-2 controls bidirectional signaling of integrins. Genes and Development, 2008, 22, 1325-1330.	2.7	381
50	Loss of Kindlin-1 Causes Skin Atrophy and Lethal Neonatal Intestinal Epithelial Dysfunction. PLoS Genetics, 2008, 4, e1000289.	1.5	185
51	The Kindlins: Subcellular localization and expression during murine development. Experimental Cell Research, 2006, 312, 3142-3151.	1.2	217
52	MEK1 and MEK2, Different Regulators of the G1/S Transition. Journal of Biological Chemistry, 2004, 279, 43861-43869.	1.6	96
53	Integrin-linked kinase: integrin's mysterious partner. Current Opinion in Cell Biology, 2004, 16, 565-571.	2.6	69