
Piet Verburg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1232789/publications.pdf Version: 2024-02-01

DIFT VEDRUDC

#	Article	IF	CITATIONS
1	A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP Lake Sector. Geoscientific Model Development, 2022, 15, 4597-4623.	3.6	37
2	Sedimentary phosphorus in contrasting, shallow New Zealand lakes and its effect on water quality. New Zealand Journal of Marine and Freshwater Research, 2021, 55, 592-611.	2.0	3
3	The extent and variability of stormâ€induced temperature changes in lakes measured with longâ€ŧerm and highâ€frequency data. Limnology and Oceanography, 2021, 66, 1979-1992.	3.1	10
4	Climate change drives widespread shifts in lake thermal habitat. Nature Climate Change, 2021, 11, 521-529.	18.8	87
5	Widespread deoxygenation of temperate lakes. Nature, 2021, 594, 66-70.	27.8	267
6	Global data set of long-term summertime vertical temperature profiles in 153 lakes. Scientific Data, 2021, 8, 200.	5.3	7
7	Increasing climateâ€driven taxonomic homogenization but functional differentiation among river macroinvertebrate assemblages. Clobal Change Biology, 2020, 26, 6904-6915.	9.5	33
8	Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes. Scientific Reports, 2020, 10, 20514.	3.3	56
9	Storm impacts on phytoplankton community dynamics in lakes. Global Change Biology, 2020, 26, 2756-2784.	9.5	144
10	Global Climate. Bulletin of the American Meteorological Society, 2020, 101, S9-S128.	3.3	61
11	Long-term changes in the water quality of a deep temperate oligotrophic lake in response to catchment disturbance: evidence from sediment cores. New Zealand Journal of Marine and Freshwater Research, 2019, 53, 571-587.	2.0	2
12	The role of mobile consumers in lake nutrient cycles: a brief review. Hydrobiologia, 2018, 818, 11-29.	2.0	7
13	Patterns and drivers of deep chlorophyll maxima structure in 100 lakes: The relative importance of light and thermal stratification. Limnology and Oceanography, 2018, 63, 628-646.	3.1	119
14	Nutrient Budgets in Lakes. , 2018, , 129-163.		4
15	Geographic and temporal variations in turbulent heat loss from lakes: A global analysis across 45 lakes. Limnology and Oceanography, 2018, 63, 2436-2449.	3.1	47
16	Tropical Meromictic Lakes: Specifics of Meromixis and Case Studies of Lakes Tanganyika, Malawi, and Matano. Ecological Studies, 2017, , 277-323.	1.2	12
17	Variable littoralâ€pelagic coupling as a foodâ€web response to seasonal changes in pelagic primary production. Freshwater Biology, 2017, 62, 2008-2025.	2.4	19
18	Latitude and lake size are important predictors of overâ€ŀake atmospheric stability. Geophysical Research Letters, 2017, 44, 8875-8883.	4.0	31

PIET VERBURG

#	Article	IF	CITATIONS
19	Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters, 2015, 42, 10,773.	4.0	767
20	A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Scientific Data, 2015, 2, 150008.	5.3	153
21	Longâ€ŧerm changes in structure and function of a tropical headwater stream following a diseaseâ€driven amphibian decline. Freshwater Biology, 2015, 60, 575-589.	2.4	20
22	Ecological integrity of deep lakes in New Zealand across anthropogenic pressure gradients. Ecological Indicators, 2014, 37, 45-57.	6.3	16
23	Potential use of classical biomanipulation to improve water quality in New Zealand lakes: a re-evaluation. New Zealand Journal of Marine and Freshwater Research, 2014, 48, 127-138.	2.0	35
24	Lack of Evidence for Lower Mercury Biomagnification by Biomass Dilution in More Productive Lakes: Comment on "Mercury Biomagnification through Food Webs Is Affected by Physical and Chemical Characteristics of Lakes". Environmental Science & Technology, 2014, 48, 10524-10525.	10.0	7
25	Mercury biomagnification in three geothermally-influenced lakes differing in chemistry and algal biomass. Science of the Total Environment, 2014, 493, 342-354.	8.0	24
26	Nutrient ratios, differential retention, and the effect on nutrient limitation in a deep oligotrophic lake. Hydrobiologia, 2013, 718, 119-130.	2.0	20
27	Disease-Driven Amphibian Declines Alter Ecosystem Processes in a Tropical Stream. Ecosystems, 2013, 16, 146-157.	3.4	105
28	Use of stable isotope ratios to characterize potential shifts in the isotopic niches of grazing insects following an amphibian decline in a Neotropical stream. Journal of Tropical Ecology, 2013, 29, 291-299.	1.1	8
29	Managing pollutant inputs from pastoral dairy farming to maintain water quality of a lake in a high-rainfall catchment. Marine and Freshwater Research, 2013, 64, 447.	1.3	12
30	Effects of nutrient loading on the trophic state of Lake Brunner. Marine and Freshwater Research, 2013, 64, 436.	1.3	9
31	Differential cooling drives largeâ€scale convective circulation in Lake Tanganyika. Limnology and Oceanography, 2011, 56, 910-926.	3.1	50
32	Persistent unstable atmospheric boundary layer enhances sensible and latent heat loss in a tropical great lake: Lake Tanganyika. Journal of Geophysical Research, 2010, 115, .	3.3	114
33	Challenges for interpreting stable isotope fractionation of carbon and nitrogen in tropical aquatic ecosystems. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2009, 30, 749-753.	0.1	11
34	Mercury biomagnification in the food web of Lake Tanganyika (Tanzania, East Africa). Science of the Total Environment, 2008, 402, 184-191.	8.0	79
35	A stable isotope study of a neotropical stream food web prior to the extirpation of its large amphibian community. Journal of Tropical Ecology, 2007, 23, 643-651.	1.1	51
36	Sunspots, El Niño, and the levels of Lake Victoria, East Africa. Journal of Geophysical Research, 2007, 112	3.3	57

PIET VERBURG

#	Article	IF	CITATIONS
37	The need to correct for the Suess effect in the application of δ13C in sediment of autotrophic Lake Tanganyika, as a productivity proxy in the Anthropocene. Journal of Paleolimnology, 2007, 37, 591-602.	1.6	152
38	Two new cichild species Neolamprologus (Teleostei: Cichlidae) from Lake Tanganyika, East Africa. Zootaxa, 2007, 1612, 25-44.	0.5	12
39	Wind Patterns, Evaporation, and Related Physical Variables in Lake Tanganyika, East Africa. Journal of Great Lakes Research, 2003, 29, 48-61.	1.9	43
40	Ecological Consequences of a Century of Warming in Lake Tanganyika. Science, 2003, 301, 505-507.	12.6	363
41	Feeding ecology of Lates stappersii in Lake Tanganyika. Hydrobiologia, 1999, 407, 131-139.	2.0	9