
James G Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1232608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of azithromycin on bronchial remodeling in the natural model of severe neutrophilic asthma in horses. Scientific Reports, 2022, 12, 446.	1.6	1
2	Transplacental and Breast Milk Transfer of IgG1 Are Both Required for Prolonged Protection of Offspring Against Influenza A Infection. Frontiers in Immunology, 2022, 13, 823207.	2.2	2
3	Asthma and fixed airflow obstruction: Longâ€ŧerm trajectories suggest distinct endotypes. Clinical and Experimental Allergy, 2021, 51, 39-48.	1.4	19
4	The Impact of Endoplasmic Reticulum-Associated Protein Modifications, Folding and Degradation on Lung Structure and Function. Frontiers in Physiology, 2021, 12, 665622.	1.3	9
5	Airway compliance measurements in mouse models of respiratory diseases. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L204-L212.	1.3	7
6	Role of Nrf2 in Disease: Novel Molecular Mechanisms and Therapeutic Approaches – Pulmonary Disease/Asthma. Frontiers in Physiology, 2021, 12, 727806.	1.3	30
7	Differential Regulation of the Asthmatic Phenotype by the Aryl Hydrocarbon Receptor. Frontiers in Physiology, 2021, 12, 720196.	1.3	3
8	Interferonâ€Î³ amplifies airway smooth muscleâ€mediated CD4+ T cell recruitment by promoting the secretion of C–X–Câ€motif chemokine receptor 3 ligands. FASEB Journal, 2021, 35, e21228.	0.2	3
9	Inhaled and intranasal ciclesonide for the treatment of covid-19 in adult outpatients: CONTAIN phase II randomised controlled trial. BMJ, The, 2021, 375, e068060.	3.0	52
10	Equine Asthma: Current Understanding and Future Directions. Frontiers in Veterinary Science, 2020, 7, 450.	0.9	57
11	Cellular Source of Cysteinyl Leukotrienes Following Chlorine Exposure. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 681-689.	1.4	3
12	Suboptimal treatment response to anti-IL-5 monoclonal antibodies in severe eosinophilic asthmatics with airway autoimmune phenomena. European Respiratory Journal, 2020, 56, 2000117.	3.1	71
13	Tolerogenic signaling of alveolar macrophages induces lung adaptation to oxidative injury. Journal of Allergy and Clinical Immunology, 2019, 144, 945-961.e9.	1.5	11
14	Characterization of cystic fibrosis airway smooth muscle cell proliferative and contractile activities. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L690-L701.	1.3	6
15	HB-EGF Synthesized by CD4 T Cells Modulates Allergic Airway Eosinophilia by Regulating IL-5 Synthesis. Journal of Immunology, 2019, 203, 39-47.	0.4	2
16	Organic dust, causing both oxidative stress and Nrf2 activation, is phagocytized by bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L305-L316.	1.3	10
17	Omalizumab in patients with severe asthma and persistent sputum eosinophilia. Allergy, Asthma and Clinical Immunology, 2019, 15, 21.	0.9	15
18	Effect of bronchial thermoplasty on structural changes and inflammatory mediators in the airways of subjects with severe asthma. Respiratory Medicine, 2019, 150, 165-172.	1.3	33

#	Article	IF	CITATIONS
19	Nucleic Acid Sensing in Allergic Disorders. International Review of Cell and Molecular Biology, 2019, 345, 1-33.	1.6	1
20	Contractile Properties of Intrapulmonary Airway Smooth Muscle in Cystic Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 434-444.	1.4	13
21	Benralizumab attenuates airway eosinophilia in prednisone-dependent asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 1529-1532.e8.	1.5	80
22	Interleukinâ€17A and vascular remodelling in severe asthma; lack of evidence for a direct role. Clinical and Experimental Allergy, 2018, 48, 365-378.	1.4	12
23	Equine asthma: Integrative biologic relevance of a recently proposed nomenclature. Journal of Veterinary Internal Medicine, 2018, 32, 2088-2098.	0.6	70
24	March1 E3 Ubiquitin Ligase Modulates Features of Allergic Asthma in an Ovalbumin-Induced Mouse Model of Lung Inflammation. Journal of Immunology Research, 2018, 2018, 1-17.	0.9	16
25	Airway smooth muscle may drive mucus hypersecretion in asthma. European Respiratory Journal, 2018, 52, 1801166.	3.1	3
26	Alveolar Macrophages in the Resolution of Inflammation, Tissue Repair, and Tolerance to Infection. Frontiers in Immunology, 2018, 9, 1777.	2.2	240
27	Airway Hyperresponsiveness in Asthma: Measurement and Clinical Relevance. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 649-659.e2.	2.0	68
28	Fenotipos del asma, ¿son importantes?. Archivos De Bronconeumologia, 2017, 53, 177-179.	0.4	4
29	Asthma phenotypes: Do they matter?. Archivos De Bronconeumologia, 2017, 53, 177-179.	0.4	1
30	Human βâ€defensinâ€3 induces ILâ€8 release and apoptosis in airway smooth muscle cells. Clinical and Experimental Allergy, 2017, 47, 1138-1149.	1.4	19
31	An Official American Thoracic Society Workshop Report: Chemical Inhalational Disasters. Biology of Lung Injury, Development of Novel Therapeutics, and Medical Preparedness. Annals of the American Thoracic Society, 2017, 14, 1060-1072.	1.5	37
32	The TLR4–TRIF pathway can protect against the development of experimental allergic asthma. Immunology, 2017, 152, 138-149.	2.0	25
33	Directional preference of airway smooth muscle mass increase in human asthmatic airways. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L845-L854.	1.3	35
34	Semaphorin 4C Protects against Allergic Inflammation: Requirement of Regulatory CD138+ Plasma Cells. Journal of Immunology, 2017, 198, 71-81.	0.4	15
35	Relationship between Vascular Resistance and Sympathetic Nerve Fiber Density in Arterial Vessels in Children With Sleep Disordered Breathing. Journal of the American Heart Association, 2017, 6, .	1.6	12
36	Basic Fibroblast Growth Factor 2 Is a Determinant of CD4 T Cell–Airway Smooth Muscle Cell Communication through Membrane Conduits. Journal of Immunology, 2017, 199, 3086-3093.	0.4	6

#	Article	IF	CITATIONS
37	Fluticasone/salmeterol reduces remodelling and neutrophilic inflammation in severe equine asthma. Scientific Reports, 2017, 7, 8843.	1.6	36
38	Montelukast reduces inhaled chlorine triggered airway hyperresponsiveness and airway inflammation in the mouse. British Journal of Pharmacology, 2017, 174, 3346-3358.	2.7	19
39	Epithelial Cells Induce a Cyclo-Oxygenase-1–Dependent Endogenous Reduction in Airway Smooth Muscle Contractile Phenotype. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 683-691.	1.4	7
40	Thymic Stromal Lymphopoietin: A Promising Target in the Treatment of Asthma?. Archivos De Bronconeumologia, 2017, 53, 545-546.	0.4	3
41	Automated full-range pressure-volume curves in mice and rats. Journal of Applied Physiology, 2017, 123, 746-756.	1.2	37
42	Inflammation and airway hyperresponsiveness after chlorine exposure are prolonged by Nrf2 deficiency in mice. Free Radical Biology and Medicine, 2017, 102, 1-15.	1.3	17
43	RIPK3 interacts with MAVS to regulate type I IFN-mediated immunity to Influenza A virus infection. PLoS Pathogens, 2017, 13, e1006326.	2.1	60
44	Regulation of human airway smooth muscle cell migration and relevance to asthma. Respiratory Research, 2017, 18, 156.	1.4	68
45	Genomic deletion of GIT2 induces a premature age-related thymic dysfunction and systemic immune system disruption. Aging, 2017, 9, 706-740.	1.4	15
46	The Louis and Artur Lucian Award in Cardiovascular Diseases at McGill University. Circulation Research, 2016, 119, 975-977.	2.0	3
47	Airway hyperresponsiveness; smooth muscle as the principal actor. F1000Research, 2016, 5, 306.	0.8	53
48	Role of local eosinophilopoietic processes in the development of airway eosinophilia in prednisoneâ€dependent severe asthma. Clinical and Experimental Allergy, 2016, 46, 793-802.	1.4	90
49	Exacerbation risk in severe asthma is stratified by inflammatory phenotype using longitudinal measures of sputum eosinophils. Clinical and Experimental Allergy, 2016, 46, 1291-1302.	1.4	45
50	CysLT1 Receptor Is Protective against Oxidative Stress in a Model of Irritant-Induced Asthma. Journal of Immunology, 2016, 197, 266-277.	0.4	20
51	AllerGen's 8th research conference. Allergy, Asthma and Clinical Immunology, 2016, 12, .	0.9	0
52	Neutrophilic oxidative stress mediates organic dust-induced pulmonary inflammation and airway hyperresponsiveness. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L155-L165.	1.3	26
53	Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. Journal of Allergy and Clinical Immunology, 2016, 137, 75-86.e8.	1.5	388
54	Artificial scents have no place in our hospitals. Cmaj, 2015, 187, 1187-1187.	0.9	1

#	Article	IF	CITATIONS
55	Endobronchial Ultrasound Reliably Quantifies Airway Smooth Muscle Remodeling in an Equine Asthma Model. PLoS ONE, 2015, 10, e0136284.	1.1	21
56	Respiratory Medicine and Research at Mcgill University: A Historical Perspective. Canadian Respiratory Journal, 2015, 22, 18-19.	0.8	1
57	Respiratory Medicine and Research at McGill University: A Historical Perspective. Canadian Respiratory Journal, 2015, 22, e4-e7.	0.8	Ο
58	Nanotubes Connect CD4+ T Cells to Airway Smooth Muscle Cells: Novel Mechanism of T Cell Survival. Journal of Immunology, 2015, 194, 5626-5634.	0.4	19
59	Evolution of the Immune Response to Chronic Airway Colonization with Aspergillus fumigatus Hyphae. Infection and Immunity, 2015, 83, 3590-3600.	1.0	31
60	Mechanical consequences of allergic induced remodeling on mice airway resistance and compressibility. Respiratory Physiology and Neurobiology, 2015, 218, 11-20.	0.7	6
61	Human Trachealis and Main Bronchi Smooth Muscle Are Normoresponsive in Asthma. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 884-893.	2.5	50
62	An Official American Thoracic Society Workshop Report: Presentations and Discussion of the Fifth Jack Pepys Workshop on Asthma in the Workplace. Comparisons between Asthma in the Workplace and Non–Work-related Asthma. Annals of the American Thoracic Society, 2015, 12, S99-S110.	1.5	27
63	Neutrophils Mediate Airway Hyperresponsiveness after Chlorine-Induced Airway Injury in the Mouse. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 513-522.	1.4	43
64	Concomitant Exposure to Ovalbumin and Endotoxin Augments Airway Inflammation but Not Airway Hyperresponsiveness in a Murine Model of Asthma. PLoS ONE, 2014, 9, e98648.	1.1	20
65	Airway arginase expression and Nï‰-hydroxy-nor-arginine effect on methacholine-induced bronchoconstriction differentiate Lewis and Fischer rat strains. Journal of Applied Physiology, 2014, 116, 621-627.	1.2	0
66	Safety and efficacy of an oral <scp>CCR</scp> 3 antagonist in patients with asthma and eosinophilic bronchitis: a randomized, placeboâ€controlled clinical trial. Clinical and Experimental Allergy, 2014, 44, 508-516.	1.4	79
67	CXCL1 Inhibits Airway Smooth Muscle Cell Migration through the Decoy Receptor Duffy Antigen Receptor for Chemokines. Journal of Immunology, 2014, 193, 1416-1426.	0.4	22
68	Back to the Future: Reflections on the History of the Future of Family Medicine. Journal of the American Board of Family Medicine, 2014, 27, 839-845.	0.8	1
69	NLRX1 prevents mitochondrial induced apoptosis and enhances macrophage antiviral immunity by interacting with influenza virus PB1-F2 protein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2110-9.	3.3	95
70	Serotonin augments smooth muscle differentiation of bone marrow stromal cells. Stem Cell Research, 2014, 12, 599-609.	0.3	5
71	Characterization of arginase expression by equine neutrophils. Veterinary Immunology and Immunopathology, 2014, 157, 206-213.	0.5	4
72	Technical and physiological determinants of airway smooth muscle mass in endobronchial biopsy samples of asthmatic horses. Journal of Applied Physiology, 2014, 117, 806-815.	1.2	17

#	Article	IF	CITATIONS
73	Sphingosine 1-Phosphate (S1P) Induced Interleukin-8 (IL-8) Release Is Mediated by S1P Receptor 2 and Nuclear Factor κB in BEAS-2B Cells. PLoS ONE, 2014, 9, e95566.	1.1	24
74	How the airway smooth muscle in cystic fibrosis reacts in proinflammatory conditions: implications for airway hyper-responsiveness and asthma in cystic fibrosis. Lancet Respiratory Medicine,the, 2013, 1, 137-147.	5.2	39
75	An airway smooth muscle cell niche under physiological pulsatile flow culture using a tubular dense collagen construct. Biomaterials, 2013, 34, 1954-1966.	5.7	29
76	IL-22 contributes to TGF-β1-mediated epithelial-mesenchymal transition in asthmatic bronchial epithelial cells. Respiratory Research, 2013, 14, 118.	1.4	67
77	Mechanisms of Airway Remodeling. Chest, 2013, 144, 1026-1032.	0.4	267
78	Differential Roles of CXCL2 and CXCL3 and Their Receptors in Regulating Normal and Asthmatic Airway Smooth Muscle Cell Migration. Journal of Immunology, 2013, 191, 2731-2741.	0.4	110
79	Inhaled Birch Pollen Extract Induces Airway Hyperresponsiveness via Oxidative Stress but Independently of Pollen-Intrinsic NADPH Oxidase Activity, or the TLR4–TRIF Pathway. Journal of Immunology, 2013, 191, 922-933.	0.4	41
80	T Cell–Induced Airway Smooth Muscle Cell Proliferation via the Epidermal Growth Factor Receptor. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 563-570.	1.4	20
81	Evaluation of Respiratory System Mechanics in Mice using the Forced Oscillation Technique. Journal of Visualized Experiments, 2013, , e50172.	0.2	82
82	Maternal allergen exposure reprograms the developmental lung transcriptome in atopic and normoresponsive rat pups. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L899-L911.	1.3	7
83	Bacteriophages ï•MR299-2 and ï•NH-4 Can Eliminate Pseudomonas aeruginosa in the Murine Lung and on Cystic Fibrosis Lung Airway Cells. MBio, 2012, 3, e00029-12.	1.8	218
84	Bcl-2-associated autophagy regulator Naf-1 required for maintenance of skeletal muscle. Human Molecular Genetics, 2012, 21, 2277-2287.	1.4	84
85	Allergen-Induced Airway Remodeling in Brown Norway Rats. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 96-105.	1.4	13
86	ICOS-Expressing CD4 T Cells Induced via TLR4 in the Nasal Mucosa Are Capable of Inhibiting Experimental Allergic Asthma. Journal of Immunology, 2012, 189, 2793-2804.	0.4	22
87	Corticosteroids and Antigen Avoidance Decrease Airway Smooth Muscle Mass in an Equine Asthma Model. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 589-596.	1.4	82
88	Histamine may induce airway remodeling through release of epidermal growth factor receptor ligands from bronchial epithelial cells. FASEB Journal, 2012, 26, 1704-1716.	0.2	56
89	Treatment with a sphingosine-1-phosphate analog inhibits airway remodeling following repeated allergen exposure. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L736-L745.	1.3	26
90	Mechanisms of airway remodeling in asthma. Drug Discovery Today Disease Mechanisms, 2012, 9, e95-e102.	0.8	4

#	Article	IF	CITATIONS
91	The presence of LPS in OVA inhalations affects airway inflammation and AHR but not remodeling in a rodent model of asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L54-L63.	1.3	31
92	Immunomodulatory effects of feeding with Bifidobacterium longum on allergen-induced lung inflammation in the mouse. Pulmonary Pharmacology and Therapeutics, 2012, 25, 325-334.	1.1	29
93	Systemic inflammation and priming of peripheral blood leukocytes persist during clinical remission in horses with heaves. Veterinary Immunology and Immunopathology, 2012, 146, 35-45.	0.5	25
94	Effects of decorin and biglycan on human airway smooth muscle cell adhesion. Matrix Biology, 2012, 31, 101-112.	1.5	11
95	Genetic and histologic evidence for autophagy in asthma pathogenesis. Journal of Allergy and Clinical Immunology, 2012, 129, 569-571.	1.5	104
96	Autocrine-regulated airway smooth muscle cell migration is dependent on IL-17–induced growth-related oncogenes. Journal of Allergy and Clinical Immunology, 2012, 130, 977-985.e6.	1.5	33
97	Th17â€associated cytokines promote human airway smooth muscle cell proliferation. FASEB Journal, 2012, 26, 5152-5160.	0.2	110
98	Differential effects of extracellular matrix and mechanical strain on airway smooth muscle cells from ovalbumin- vs saline-challenged Brown Norway rats. Respiratory Physiology and Neurobiology, 2012, 181, 36-43.	0.7	4
99	Pathogenesis of severe asthma. Clinical and Experimental Allergy, 2012, 42, 625-637.	1.4	86
100	Site of Allergic Airway Narrowing and the Influence of Exogenous Surfactant in the Brown Norway Rat. PLoS ONE, 2012, 7, e29381.	1.1	12
101	TH17 cytokines induce human airway smooth muscle cell migration. Journal of Allergy and Clinical Immunology, 2011, 127, 1046-1053.e2.	1.5	76
102	Small animals models for drug discovery. Pulmonary Pharmacology and Therapeutics, 2011, 24, 513-524.	1.1	4
103	Effects of a Short Course of Inhaled Corticosteroids in Noneosinophilic Asthmatic Subjects. Canadian Respiratory Journal, 2011, 18, 278-282.	0.8	11
104	Insights into asthmatic airway remodelling through murine models. Respirology, 2011, 16, 589-597.	1.3	31
105	Synthetic double-stranded RNA enhances airway inflammation and remodelling in a rat model of asthma. Immunology, 2011, 134, 140-150.	2.0	15
106	AEOL10150: A novel therapeutic for rescue treatment after toxic gas lung injury. Free Radical Biology and Medicine, 2011, 50, 602-608.	1.3	53
107	Mesenchymal stem cellâ€seeded multilayered dense collagenâ€silk fibroin hybrid for tissue engineering applications. Biotechnology Journal, 2011, 6, 1198-1207.	1.8	33
108	Steroid-Insensitive ERK1/2 Activity Drives CXCL8 Synthesis and Neutrophilia by Airway Smooth Muscle. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 984-990.	1.4	22

#	Article	IF	CITATIONS
109	An Official American Thoracic Society Statement: Work-Exacerbated Asthma. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 368-378.	2.5	207
110	Effect of Antigenic Exposure on Airway Smooth Muscle Remodeling in an Equine Model of Chronic Asthma. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 181-187.	1.4	65
111	Could an increase in airway smooth muscle shortening velocity cause airway hyperresponsiveness?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L121-L131.	1.3	28
112	Interleukin-13 inhibits proliferation and enhances contractility of human airway smooth muscle cells without change in contractile phenotype. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L958-L966.	1.3	63
113	Psychologic Distress and Maladaptive Coping Styles in Patients With Severe vs Moderate Asthma. Chest, 2010, 137, 1324-1331.	0.4	45
114	Identification of novel chromosomal regions associated with airway hyperresponsiveness in recombinant congenic strains of mice. Mammalian Genome, 2010, 21, 28-38.	1.0	15
115	Sustained steroid release in pulmonary inflammation model. Biomaterials, 2010, 31, 6050-6059.	5.7	5
116	Dimethylthiourea protects against chlorine induced changes in airway function in a murine model of irritant induced asthma. Respiratory Research, 2010, 11, 138.	1.4	44
117	EGF receptor activation during allergic sensitization affects ILâ€6â€induced Tâ€cell influx to airways in a rat model of asthma. European Journal of Immunology, 2010, 40, 1590-1602.	1.6	21
118	Combined forced oscillation and forced expiration measurements in mice for the assessment of airway hyperresponsiveness. Respiratory Research, 2010, 11, 82.	1.4	91
119	Induction of glucocorticoid receptorâ€Î² expression in epithelial cells of asthmatic airways by Tâ€helper type 17 cytokines. Clinical and Experimental Allergy, 2010, 40, 1312-1322.	1.4	101
120	Sites of allergic airway smooth muscle remodeling and hyperresponsiveness are not associated in the rat. Journal of Applied Physiology, 2010, 109, 1170-1178.	1.2	18
121	LTD ₄ induces HB-EGF-dependent CXCL8 release through EGFR activation in human bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L808-L815.	1.3	35
122	Chlorine Gas Inhalation: Human Clinical Evidence of Toxicity and Experience in Animal Models. Proceedings of the American Thoracic Society, 2010, 7, 257-263.	3.5	244
123	IL-4 activates equine neutrophils and induces a mixed inflammatory cytokine expression profile with enhanced neutrophil chemotactic mediator release ex vivo. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L472-L482.	1.3	57
124	Genetic Influences on Asthma Susceptibility in the Developing Lung. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 720-730.	1.4	12
125	T Cells Localize with Proliferating Smooth Muscle α-Actin ⁺ Cell Compartments in Asthma. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 317-324.	2.5	93
126	Increased IL-33 expression by epithelial cells in bronchial asthma. Journal of Allergy and Clinical Immunology, 2010, 125, 752-754.	1.5	408

#	Article	IF	CITATIONS
127	Variability of sputum inflammatory cells in asthmatic patients receiving corticosteroid therapy: A prospective study using multiple samples. Journal of Allergy and Clinical Immunology, 2010, 125, 1161-1163.e4.	1.5	64
128	Airway smooth muscle remodeling is a dynamic process in severe long-standing asthma. Journal of Allergy and Clinical Immunology, 2010, 125, 1037-1045.e3.	1.5	105
129	Beneficial Effects of Atorvastatin on Lung Structural Remodeling and Function in Ischemic Heart Failure. Journal of Cardiac Failure, 2010, 16, 679-688.	0.7	20
130	Overview of asthma; the place of the T cell. Current Opinion in Pharmacology, 2010, 10, 218-225.	1.7	46
131	IL-17 Promotes p38 MAPK-Dependent Endothelial Activation Enhancing Neutrophil Recruitment to Sites of Inflammation. Journal of Immunology, 2010, 184, 4531-4537.	0.4	229
132	Increased Expression of IL-33 in Severe Asthma: Evidence of Expression by Airway Smooth Muscle Cells. Journal of Immunology, 2009, 183, 5094-5103.	0.4	488
133	Role of the Cystic Fibrosis Transmembrane Conductance Channel in Human Airway Smooth Muscle. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 217-222.	1.4	55
134	The effects of repeated allergen challenge on airway smooth muscle structural and molecular remodeling in a rat model of allergic asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L698-L705.	1.3	34
135	Depletion of CD8 ⁺ T cells enhances airway remodelling in a rodent model of asthma. Immunology, 2009, 126, 45-54.	2.0	13
136	Epitheliumâ€derived chemokines induce airway smooth muscle cell migration. Clinical and Experimental Allergy, 2009, 39, 1018-1026.	1.4	34
137	Plateletâ€derived growth factor and transforming growth factorâ€Î² modulate the expression of matrix metalloproteinases and migratory function of human airway smooth muscle cells. Clinical and Experimental Allergy, 2009, 39, 1370-1380.	1.4	60
138	TH17-associated cytokines (IL-17A and IL-17F) in severe asthma. Journal of Allergy and Clinical Immunology, 2009, 123, 1185-1187.	1.5	525
139	Airway remodeling in subjects with severe asthma with or without chronic persistent airflow obstruction. Journal of Allergy and Clinical Immunology, 2009, 124, 45-51.e4.	1.5	189
140	Prevalence of obstructive sleep apnea–hypopnea in severe versus moderate asthma. Journal of Allergy and Clinical Immunology, 2009, 124, 371-376.	1.5	189
141	Marketing data: Has the rise of impact factor led to the fall of objective language in the scientific article?. Respiratory Research, 2009, 10, 35.	1.4	21
142	The Lymphocyte in Asthma and COPD. , 2009, , 157-172.		0
143	Structural aspects of airway remodeling in asthma. Current Allergy and Asthma Reports, 2008, 8, 540-547.	2.4	41
144	Time course of airway remodelling after an acute chlorine gas exposure in mice. Respiratory Research, 2008, 9, 61.	1.4	58

#	Article	IF	CITATIONS
145	The effects of interleukin-8 on airway smooth muscle contraction in cystic fibrosis. Respiratory Research, 2008, 9, 76.	1.4	43
146	IFN-γ, IL-4 and IL-13 modulate responsiveness of human airway smooth muscle cells to IL-13. Respiratory Research, 2008, 9, 84.	1.4	31
147	Differences in Airway Cytokine Profile in Severe Asthma Compared to Moderate Asthma. Chest, 2008, 133, 420-426.	0.4	207
148	MAP kinases mediate interleukin-13 effects on calcium signaling in human airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L171-L177.	1.3	34
149	Effects of decorin and biglycan on human airway smooth muscle cell proliferation and apoptosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L764-L771.	1.3	33
150	Genetic Differences in Airway Smooth Muscle Function. Proceedings of the American Thoracic Society, 2008, 5, 73-79.	3.5	5
151	The epidermal growth factor receptor mediates allergic airway remodelling in the rat. European Respiratory Journal, 2008, 32, 1213-1223.	3.1	67
152	Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. European Respiratory Journal, 2007, 29, 834-860.	3.1	344
153	Chronic Asthma–induced Airway Remodeling Is Prevented by Toll-like Receptor-7/8 Ligand S28463. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 1241-1249.	2.5	116
154	The role of Î ³ δT cells in airway epithelial injury and bronchial responsiveness after chlorine gas exposure in mice. Respiratory Research, 2007, 8, 21.	1.4	36
155	Downregulation of a disintegrin and metalloproteinase 33 by IFN-Î ³ in human airway smooth muscle cells. Journal of Allergy and Clinical Immunology, 2007, 119, 89-97.	1.5	34
156	Increased expression of ADAM33 and ADAM8 with disease progression in asthma. Journal of Allergy and Clinical Immunology, 2007, 119, 863-871.	1.5	140
157	Interferon-?-dependent inhibition of late allergic airway responses and eosinophilia by CD8+?? T cells. Immunology, 2007, 122, 230-238.	2.0	33
158	Increased glucocorticoid receptor–β expression, but not decreased histone deacetylase 2, in severe asthma. Journal of Allergy and Clinical Immunology, 2006, 117, 703-705.	1.5	43
159	Heaves, an asthma-like equine disease, involves airway smooth muscle remodeling. Journal of Allergy and Clinical Immunology, 2006, 118, 382-388.	1.5	97
160	Airway inflammation assessed by invasive and noninvasive means in severe asthma: Eosinophilic and noneosinophilic phenotypes. Journal of Allergy and Clinical Immunology, 2006, 118, 1033-1039.	1.5	185
161	Immunotherapy as a disease modifier. Paediatric Respiratory Reviews, 2006, 7, S106-S107.	1.2	2
162	Immune responses to viral infections: Relevance for asthma. Paediatric Respiratory Reviews, 2006, 7, S125-S127.	1.2	17

#	Article	IF	CITATIONS
163	Rat models of asthma and chronic obstructive lung disease. Pulmonary Pharmacology and Therapeutics, 2006, 19, 377-385.	1.1	50
164	TNF-α and IFN-γ inversely modulate expression of the IL-17E receptor in airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L1238-L1246.	1.3	49
165	Basic mechanisms of development of airway structural changes in asthma. European Respiratory Journal, 2006, 29, 379-389.	3.1	115
166	Interleukin-8: novel roles in human airway smooth muscle cell contraction and migration. American Journal of Physiology - Cell Physiology, 2006, 291, C957-C965.	2.1	126
167	Airway remodeling in allergen-challenged Brown Norway rats: distribution of proteoglycans. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L1052-L1058.	1.3	26
168	Differences in proteoglycan deposition in the airways of moderate and severe asthmatics. European Respiratory Journal, 2006, 29, 71-77.	3.1	77
169	IL-13 may mediate allergen-induced hyperresponsiveness independently of IL-5 or eotaxin by effects on airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L576-L584.	1.3	84
170	The Effects of Extracellular Purines and Pyrimidines on Human Airway Smooth Muscle Cells. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 941-948.	1.3	19
171	Effects of Prostaglandin D2, 15-Deoxy-Δ12,14-prostaglandin J2, and Selective DP1 and DP2 Receptor Agonists on Pulmonary Infiltration of Eosinophils in Brown Norway Rats. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 64-69.	1.3	67
172	Probing the Viscoelastic Behavior of Cultured Airway Smooth Muscle Cells with Atomic Force Microscopy: Stiffening Induced by Contractile Agonist. Biophysical Journal, 2005, 88, 2994-3007.	0.2	194
173	Resident CD8+ T cells suppress CD4+ T cell–dependent late allergic airway responses. Journal of Allergy and Clinical Immunology, 2005, 115, 521-526.	1.5	20
174	Differences in airway remodeling between subjects with severe and moderate asthma. Journal of Allergy and Clinical Immunology, 2005, 116, 544-549.	1.5	287
175	Antigen-specific CD4+ T cells drive airway smooth muscle remodeling in experimental asthma. Journal of Clinical Investigation, 2005, 115, 1580-1589.	3.9	109
176	The Use and Misuse of Penh in Animal Models of Lung Disease. American Journal of Respiratory Cell and Molecular Biology, 2004, 31, 373-374.	1.4	228
177	LY-294002 [2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one] Affects Calcium Signaling in Airway Smooth Muscle Cells Independently of Phosphoinositide 3-Kinase Inhibition. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 787-793.	1.3	30
178	Airway Remodeling: Lessons From Animal Models. Clinical Reviews in Allergy and Immunology, 2004, 27, 003-022.	2.9	39
179	Cytokine cross-talk. Pediatric Pulmonology, 2004, 37, 45-46.	1.0	0
180	Cytokine therapies. Pediatric Pulmonology, 2004, 37, 49-51.	1.0	1

#	Article	IF	CITATIONS
181	Modeling the diverse features of asthma. Drug Discovery Today: Disease Models, 2004, 1, 311-318.	1.2	Ο
182	CD4+ T cells migrate from airway to bone marrow after antigen inhalation in rats. Journal of Allergy and Clinical Immunology, 2004, 113, 455-461.	1.5	8
183	Proliferative aspects of airway smooth muscle. Journal of Allergy and Clinical Immunology, 2004, 114, S2-S17.	1.5	198
184	CD8+ αβ T cells can mediate late airway responses and airway eosinophilia in rats. Journal of Allergy and Clinical Immunology, 2004, 114, 1345-1352.	1.5	25
185	T cell cytokines: animal models. Paediatric Respiratory Reviews, 2004, 5, S47-S51.	1.2	15
186	Inhibition of allergic airways inflammation and airway hyperresponsiveness in mice by dexamethasone: Role of eosinophils, IL-5, eotaxin, and IL-13. Journal of Allergy and Clinical Immunology, 2003, 111, 1049-1061.	1.5	70
187	The effects of CD8+γδT cells on late allergic airway responses and airway inflammation in rats. Journal of Allergy and Clinical Immunology, 2003, 112, 547-555.	1.5	23
188	Conjugates of ovalbumin and monomethoxypolyethylene glycol abolish late allergic responses and decrease IL-4 and IL-5 mRNA expression in the rat. Pulmonary Pharmacology and Therapeutics, 2003, 16, 361-369.	1.1	2
189	Airway smooth muscle growth from the perspective of animal models. Respiratory Physiology and Neurobiology, 2003, 137, 251-261.	0.7	37
190	Chlorine-induced Injury to the Airways in Mice. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 568-574.	2.5	140
191	Involvement of the Cysteinyl–Leukotrienes in Allergen-Induced Airway Eosinophilia and Hyperresponsiveness in the Mouse. American Journal of Respiratory Cell and Molecular Biology, 2003, 28, 25-32.	1.4	60
192	Airway Smooth Muscle Cells Express Functional Neurokinin-1 Receptors and the Nerve-Derived Preprotachykinin-A Gene. American Journal of Respiratory Cell and Molecular Biology, 2003, 28, 103-110.	1.4	29
193	Effects of hypoxia on rat airway smooth muscle cell proliferation. Journal of Applied Physiology, 2003, 94, 1403-1409.	1.2	29
194	Effects of Extracellular Triphosphate Nucleotides and Nucleosides on Airway Smooth Muscle Cell Proliferation. American Journal of Respiratory Cell and Molecular Biology, 2002, 27, 732-738.	1.4	16
195	IFN-γ secretion by CD8+T cells inhibits allergen-induced airway eosinophilia but not late airway responses. Journal of Allergy and Clinical Immunology, 2002, 109, 803-809.	1.5	35
196	The Immunomodulatory Actions of Prostaglandin E2 on Allergic Airway Responses in the Rat. Journal of Immunology, 2002, 169, 3963-3969.	0.4	82
197	Src modulates serotonin-induced calcium signaling by regulating phosphatidylinositol 4,5-bisphosphate. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L1305-L1313.	1.3	24
198	Effect of α ₄ -Integrin Blockade on CD4 ⁺ Cell-driven Late Airway Responses in the Rat. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 101-108.	2.5	12

#	Article	IF	CITATIONS
199	Neutrophilic Airway Inflammation in Horses with Heaves Is Characterized by a Th2-type Cytokine Profile. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 1410-1413.	2.5	163
200	The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease. European Respiratory Journal, 2000, 16, 349.	3.1	129
201	Tyrosine kinase-dependent calcium signaling in airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L1138-L1145.	1.3	30
202	Inhaled budesonide inhibits OVA-induced airway narrowing, inflammation, and cys-LT synthesis in BN rats. Journal of Applied Physiology, 2000, 89, 1852-1858.	1.2	16
203	Inositol (1,4,5)Trisphosphate Metabolism and Enhanced Calcium Mobilization in Airway Smooth Muscle of Hyperresponsive Rats. American Journal of Respiratory Cell and Molecular Biology, 2000, 23, 514-520.	1.4	27
204	Dichotomy between Neurokinin Receptor Actions in Modulating Allergic Airway Responses in an Animal Model of Helper T Cell Type 2 Cytokine-associated Inflammation. American Journal of Respiratory and Critical Care Medicine, 2000, 162, 1068-1074.	2.5	41
205	Bradykinin-induced Airway Constriction in Guinea-pigs: Role of Leukotriene D4. Pulmonary Pharmacology and Therapeutics, 2000, 13, 181-188.	1.1	12
206	Calcium and growth responses of hyperresponsive airway smooth muscle to different isoforms of platelet-derived growth factor (PDGF). Canadian Journal of Physiology and Pharmacology, 2000, 78, 867-873.	0.7	6
207	Characterization of airway inflammation after repeated exposures to occupational agents. Journal of Allergy and Clinical Immunology, 2000, 106, 1163-1170.	1.5	70
208	Interferon-Î ³ increases IL-12 mRNA expression and attentuates allergic late-onset airway responses in the Brown Norway rat. European Respiratory Journal, 2000, 16, 22.	3.1	12
209	Strain dependence of the airway response to dry-gas hyperpnea challenge in the rat. Journal of Applied Physiology, 1999, 86, 152-158.	1.2	5
210	Enhanced Ca2 +Mobilization in Airway Smooth Muscle Contributes to Airway Hyperresponsiveness in an Inbred Strain of Rat. American Journal of Respiratory and Critical Care Medicine, 1999, 160, 446-453.	2.5	51
211	Mechanisms of the Potentiation by Adenosine of Adenosine Triphosphate–Induced Calcium Release in Tracheal Smooth-Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 1999, 21, 30-36.	1.4	18
212	Suitability of cell metabolic colorimetric assays for assessment of CD4+ T cell proliferation: comparison to 5-bromo-2-deoxyuridine (BrdU) ELISA. Journal of Immunological Methods, 1999, 223, 185-194.	0.6	59
213	Montelukast, a leukotriene receptor antagonist, inhibits the late airway response to antigen, airway eosinophilia, and IL-5–expressing cells in Brown Norway ratsâ~†â~†â~†â~1a~ Journal of Allergy and Clinical Immunology, 1999, 104, 1147-1154.	1.5	65
214	IL-2 enhances allergic airway responses in rats by increased inflammation but not through increased synthesis of cysteinyl leukotrienesâ~†â~†â~†â~ Journal of Allergy and Clinical Immunology, 1999, 104, 145-152.	1.5	10
215	Adoptively transferred late allergic response is inhibited by IL-4, but not IL-5, antisense oligonucleotideâ~†â~†â~†â~â~ Journal of Allergy and Clinical Immunology, 1999, 104, 205-214.	1.5	39
216	The β2-agonist Salbutamol Inhibits Bronchoconstriction and Leukotriene D4Synthesis After Dry Gas Hyperpnea in the Guinea-pig. Pulmonary Pharmacology and Therapeutics, 1999, 12, 325-329.	1.1	4

#	Article	IF	CITATIONS
217	ILâ€3 does not affect the allergic airway responses and leukotriene production after allergen challenge in rats. European Respiratory Journal, 1999, 13, 970.	3.1	9
218	Involvement of α -4 Integrins in Allergic Airway Responses and Mast Cell DegranulationIn Vivo. American Journal of Respiratory and Critical Care Medicine, 1998, 158, 1127-1133.	2.5	41
219	CD4 + T Cells Can Induce Airway Hyperresponsiveness to Allergen Challenge in the Brown Norway Rat. American Journal of Respiratory and Critical Care Medicine, 1998, 158, 1863-1870.	2.5	38
220	Time-course of functional and pathological changes after a single high acute inhalation of chlorine in rats. European Respiratory Journal, 1998, 11, 922-928.	3.1	66
221	Nitric oxide synthesis by tracheal smooth muscle cells by a nitric oxide synthase-independent pathway. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L895-L901.	1.3	5
222	Repeated allergen inhalations induce DNA synthesis in airway smooth muscle and epithelial cells in vivo. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 274, L417-L424.	1.3	37
223	Effect of time-varying load on degree of bronchoconstriction in the dog. Journal of Applied Physiology, 1998, 85, 1464-1470.	1.2	12
224	Airway hyperresponsiveness in a rat model of chronic bronchitis: role of C fibers American Journal of Respiratory and Critical Care Medicine, 1997, 155, 1222-1229.	2.5	30
225	Adoptively transferred late allergic airway responses are associated with Th2-type cytokines in the rat American Journal of Respiratory Cell and Molecular Biology, 1997, 16, 69-74.	1.4	32
226	Effects of purine nucleotides and nucleoside on cytosolic calcium levels in rat tracheal smooth muscle cells American Journal of Respiratory Cell and Molecular Biology, 1997, 16, 199-205.	1.4	19
227	Impact of Nutritional Support on Functional Status During an Acute Exacerbation of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 1997, 156, 794-799.	2.5	120
228	Microvascular Leakage in the Airway Wall and Lumen During Allergen Induced Early and Late Responses in Rats. Pulmonary Pharmacology and Therapeutics, 1997, 10, 223-230.	1,1	18
229	Hyperpnea-induced bronchoconstriction is dependent on tachykinin-induced cysteinyl leukotriene synthesis. Journal of Applied Physiology, 1997, 82, 538-544.	1.2	33
230	An emerging paradigm shift on the role of leukocyte adhesion molecules Journal of Clinical Investigation, 1997, 100, 2937-2938.	3.9	14
231	Depletion of CD8+ T cells enhances pulmonary inflammation but not airway responsiveness after antigen challenge in ratsâ ⁻ †, â ⁻ †â ⁻ †, â ⁻ , â ⁻ , â ⁻ Journal of Allergy and Clinical Immunology, 1996, 98, 617-627.	1.5	24
232	Effect of nedocromil sodium on allergen-induced airway responses and changes in the quantity of airway smooth muscle in rats. Journal of Allergy and Clinical Immunology, 1996, 98, 400-407.	1.5	18
233	Methacholine-induced bronchoconstriction and airway smooth muscle in the guinea pig. Journal of Applied Physiology, 1996, 80, 437-444.	1.2	10
234	Endogenous nitric oxide contributes to strain-related differences in airway responsiveness in rats. Journal of Applied Physiology, 1996, 80, 404-410.	1.2	25

#	Article	IF	CITATIONS
235	Mechanical Responses of Tracheal Tissue In Vitro: Dependance on the Tissue Preparation Employed and Relationship to Smooth Muscle Content. Pulmonary Pharmacology, 1996, 9, 157-166.	0.5	13
236	The role of endogenous corticosterone in the late-phase response to allergen challenge in the brown Norway rat American Journal of Respiratory and Critical Care Medicine, 1996, 153, 545-550.	2.5	37
237	Nutritional status and mortality in chronic obstructive pulmonary disease American Journal of Respiratory and Critical Care Medicine, 1996, 153, 961-966.	2.5	360
238	Effects of depletion of cells bearing the interleukin-2 receptor on immunoglobulin production and allergic airway responses in the rat American Journal of Respiratory and Critical Care Medicine, 1996, 153, 1214-1221.	2.5	18
239	Enhanced growth response of airway smooth muscle in inbred rats with airway hyperresponsiveness American Journal of Respiratory Cell and Molecular Biology, 1996, 15, 590-599.	1.4	31
240	Mechanisms of Allergic Bronchoconstriction in the Rat✲. Advances in Experimental Medicine and Biology, 1996, 409, 9-15.	0.8	0
241	Antigen-Induced Bronchial Hyperreactivity in Rats. , 1996, , 75-93.		0
242	Effects of Dexamethasone on Leukotriene Synthesis and Airway Responses to Antigen and Leukotriene D4in Rats. American Journal of Respiratory and Critical Care Medicine, 1995, 151, 1143-1150.	2.5	4
243	Repeated Allergen Inhalations Induce DNA Synthesis in Airway Smooth Muscle and Epithelial Cells In Vivo. Chest, 1995, 107, 94S-95S.	0.4	10
244	Association between late allergic bronchoconstriction in the rat and allergen-stimulated lymphocyte proliferation in vitro American Journal of Respiratory and Critical Care Medicine, 1995, 151, 470-474.	2.5	16
245	Effects of dexamethasone on leukotriene synthesis and airway responses to antigen and leukotriene D4 in rats American Journal of Respiratory and Critical Care Medicine, 1995, 151, 1143-1150.	2.5	14
246	Adoptive transfer of allergic airway responses with sensitized lymphocytes in BN rats American Journal of Respiratory and Critical Care Medicine, 1995, 152, 64-70.	2.5	31
247	Role of VLA-4 and LFA-1 in Allergen-Induced Airway Hyperresponsiveness and Lung Inflammation in the Rat. American Journal of Respiratory and Critical Care Medicine, 1995, 151, 822-829.	2.5	68
248	In vitro airway and tissue response to antigen in sensitized rats. Role of serotonin and leukotriene D4 American Journal of Respiratory and Critical Care Medicine, 1995, 152, 81-86.	2.5	25
249	Cellular infiltration and eicosanoid synthesis in brown Norway rat lungs after allergen challenge American Journal of Respiratory Cell and Molecular Biology, 1995, 13, 477-486.	1.4	22
250	Time course of histamine-induced bronchoconstriction and its adrenergic and H2 modulation. Respiration Physiology, 1995, 99, 127-138.	2.8	4
251	Role of VLA-4 and LFA-1 in allergen-induced airway hyperresponsiveness and lung inflammation in the rat American Journal of Respiratory and Critical Care Medicine, 1995, 151, 822-829.	2.5	36
252	Increased maximal pulmonary response to methacholine and airway smooth muscle in immature compared with mature rabbits American Journal of Respiratory and Critical Care Medicine, 1995, 151, 836-840.	2.5	6

#	Article	IF	CITATIONS
253	Transfer of allergic airway responses with antigen-primed CD4+ but not CD8+ T cells in brown Norway rats Journal of Clinical Investigation, 1995, 96, 1303-1310.	3.9	119
254	Proposed nomenclature for quantifying subdivisions of the bronchial wall. Journal of Applied Physiology, 1994, 77, 1011-1014.	1.2	155
255	The role of the leukocyte adhesion molecules VLA-4, LFA-1, and Mac-1 in allergic airway responses in the rat American Journal of Respiratory and Critical Care Medicine, 1994, 149, 1186-1191.	2.5	103
256	In vitro allergic bronchoconstriction in the brown Norway rat American Journal of Respiratory and Critical Care Medicine, 1994, 149, 1499-1505.	2.5	32
257	Airway and tissue responses to antigen challenge in sensitized brown Norway rats American Journal of Respiratory and Critical Care Medicine, 1994, 150, 218-226.	2.5	45
258	Allergen-induced airway responses in rats pretreated with Sephadex. Agents and Actions, 1993, 40, 141-149.	0.7	3
259	Leukotrienes in Bile during the Early and the Late Airway Responses after Allergen Challenge of Sensitized Rats. The American Review of Respiratory Disease, 1993, 147, 104-110.	2.9	47
260	Inflammatory Cell Populations in the Airways and Parenchyma after Antigen Challenge in the Rat. The American Review of Respiratory Disease, 1993, 147, 967-974.	2.9	78
261	Role of Leukotriene D ₄ in Allergen-induced Increases in Airway Smooth Muscle in the Rat. The American Review of Respiratory Disease, 1993, 148, 413-417.	2.9	134
262	Effect of Dexamethasone on Airway Inflammation and Responsiveness after Antigen Challenge of the Rat. The American Review of Respiratory Disease, 1993, 148, 932-939.	2.9	32
263	Airway-parenchymal interdependence and bronchial responsiveness in two highly inbred rat strains. Journal of Applied Physiology, 1993, 74, 538-544.	1.2	27
264	Responsiveness of and interactions between airways and tissue in guinea pigs during induced constriction. Journal of Applied Physiology, 1993, 74, 2848-2854.	1.2	22
265	Comparative study of mechanical interdependence: effect of lung volume on Raw during induced constriction. Journal of Applied Physiology, 1993, 75, 2500-2505.	1.2	30
266	Depletion of OX-8 lymphocytes from the blood and airways using monoclonal antibodies enhances the late airway response in rats Journal of Clinical Investigation, 1993, 92, 1477-1482.	3.9	47
267	Morphometric Changes during the Early Airway Response to Allergen Challenge in the Rat. The American Review of Respiratory Disease, 1992, 146, 1037-1041.	2.9	20
268	Identification of Adenylate Cyclase—coupled Histamine H ₂ Receptors in Guinea Pig Tracheal Smooth Muscle Cells in Culture and the Effect of Dexamethasone. American Journal of Respiratory Cell and Molecular Biology, 1992, 7, 582-589.	1.4	15
269	Effect of Interleukin-2 on the Airway Response to Antigen in the Rat. The American Review of Respiratory Disease, 1992, 146, 163-169.	2.9	54
270	Is Asthma T-Cell Mediated?. The American Review of Respiratory Disease, 1992, 146, 536-536.	2.9	0

#	Article	IF	CITATIONS
271	Induction of sleep apnoea with negative pressure ventilation in patients with chronic obstructive lung disease Thorax, 1992, 47, 612-615.	2.7	30
272	In vivo airway reactivity: predictive value of morphological estimates of airway smooth muscle. Canadian Journal of Physiology and Pharmacology, 1992, 70, 597-601.	0.7	18
273	Effect of negative pressure ventilation in severe chronic obstructive pulmonary disease. Lancet, The, 1992, 340, 1425-1429.	6.3	134
274	The relationship between late asthmatic responses and antigen-specific immunoglobulin. Journal of Allergy and Clinical Immunology, 1992, 90, 661-669.	1.5	59
275	Effects of prostaglandin E2 on ganglionic transmission in the guinea pig trachea. Respiration Physiology, 1992, 87, 131-139.	2.8	9
276	A peptidergic component to vagally induced tracheal vasodilation in the dog. Journal of Applied Physiology, 1992, 73, 1102-1107.	1.2	3
277	Low-frequency pulmonary impedance in rabbits and its response to inhaled methacholine. Journal of Applied Physiology, 1992, 73, 290-295.	1.2	42
278	Comparison of upper and lower airway responses of two sensitized rat strains to inhaled antigen. Journal of Applied Physiology, 1992, 73, 1608-1613.	1.2	8
279	Effects of ketotifen on airway responses to allergen challenge in the actively sensitized Brown Norway rat. Agents and Actions, 1992, 37, 238-244.	0.7	3
280	A randomized clinical trial of negative pressure ventilation in severe chronic obstructive pulmonary disease: Design and methods. Journal of Clinical Epidemiology, 1991, 44, 483-496.	2.4	11
281	Epithelium modulates the potency of vasoactive intestinal peptide in the guinea pig. Journal of Applied Physiology, 1991, 71, 2146-2151.	1.2	9
282	Strain-related Differences in Airway Smooth Muscle and Airway Responsiveness in the Rat. The American Review of Respiratory Disease, 1991, 144, 792-796.	2.9	46
283	Structural Changes in the Airways of Sensitized Brown Norway Rats after Antigen Challenge. The American Review of Respiratory Disease, 1991, 144, 423-427.	2.9	101
284	Morphometry of the Airways during Late Responses to Antigen Challenge in the Rat. The American Review of Respiratory Disease, 1991, 143, 132-137.	2.9	23
285	Lymphokine-induced Airway Hyperresponsiveness in the Rat. The American Review of Respiratory Disease, 1991, 143, 375-379.	2.9	33
286	Acute Effects of Interleukin-2 on Lung Mechanics and Airway Responsiveness in Rats. The American Review of Respiratory Disease, 1991, 143, 380-385.	2.9	44
287	Cardiac Arrhythmias During Exercise in Severe Chronic Obstructive Pulmonary Disease. Chest, 1990, 97, 793-797.	0.4	18
288	Behavior of morphometric indices in pancreatic elastase-induced emphysema in rats. Lung, 1990, 168, 159-169.	1.4	26

#	Article	IF	CITATIONS
289	Late response of the upper airway of the rat to inhaled antigen. Journal of Applied Physiology, 1990, 69, 1360-1365.	1.2	7
290	A theoretical study of the effect of airway smooth muscle orientation on bronchoconstriction. Journal of Applied Physiology, 1990, 69, 995-1001.	1.2	49
291	Role of Leukotriene D4in the Early and Late Pulmonary Responses of Rats to Allergen Challenge. The American Review of Respiratory Disease, 1990, 142, 353-358.	2.9	44
292	The effects of vasoactive intestinal polypeptide on cholinergic neurotransmission in an isolated innervated guinea pig tracheal preparation. Respiration Physiology, 1990, 79, 111-122.	2.8	25
293	Clinical intervention in chronic respiratory failure. Chest, 1990, 97, 105S-109.	0.4	1
294	Transepithelial prostacyclin gradient in isolated canine trachea. Journal of Applied Physiology, 1989, 67, 276-281.	1.2	2
295	Effect of Nutritional Status on Exercise Performance in Patients with Chronic Obstructive Pulmonary Disease. The American Review of Respiratory Disease, 1989, 140, 1544-1548.	2.9	90
296	Negative Pressure Ventilation. Chest, 1989, 95, 95-99.	0.4	67
297	Regional variability in the response of collateral resistance to histamine in the dog: effects of cyclooxygenase inhibition. Respiration Physiology, 1989, 78, 297-308.	2.8	2
298	Late Airway Responses to Antigen Challenge in Sensitized Inbred Rats. The American Review of Respiratory Disease, 1988, 137, 1033-1037.	2.9	123
299	Effect of lung volume on interrupter resistance in cats challenged with methacholine. Journal of Applied Physiology, 1988, 64, 360-366.	1.2	47
300	Antigen challenge of sensitized rats increases airway responsiveness to methacholine. Journal of Applied Physiology, 1988, 65, 1642-1646.	1.2	60
301	Interrupter resistance elucidated by alveolar pressure measurement in open-chest normal dogs. Journal of Applied Physiology, 1988, 65, 408-414.	1.2	221
302	Changes in Upper and Lower Airway Resistance After Inhalation of Antigen in Sensitized Rats. The American Review of Respiratory Disease, 1987, 136, 363-368.	2.9	21
303	Partitioning of airway responses to inhaled methacholine in the rat. Journal of Applied Physiology, 1987, 62, 1317-1323.	1.2	22
304	Effect of endogenous prostaglandins on acetylcholine release from dog trachealis muscle. Journal of Applied Physiology, 1987, 62, 1837-1844.	1.2	33
305	Effects of lung volume on maximal methacholine-induced bronchoconstriction in normal humans. Journal of Applied Physiology, 1987, 62, 1324-1330.	1.2	349
306	Apamin and nonadrenergic inhibition of guinea pig trachealis. Agents and Actions, 1987, 22, 75-81.	0.7	4

#	Article	IF	CITATIONS
307	Acetylcholine release from canine isolated airway is not modulated by norepinephrine. Journal of Applied Physiology, 1986, 61, 1025-1030.	1.2	22
308	Methacholine-induced airway reactivity of inbred rats. Journal of Applied Physiology, 1986, 61, 2180-2185.	1.2	9
309	The Effects of Parasympathectomy on Serotonin-Induced Bronchoconstriction in the Cat ^{1–} ³ . The American Review of Respiratory Disease, 1986, 133, 110-115.	2.9	8
310	Trapped gas and airflow limitation in children with cystic fibrosis and asthma. Pediatric Pulmonology, 1986, 2, 128-134.	1.0	28
311	Endogenous Bronchodilating Prostaglandins Modulate Contraction in Isolated Canine Tracheal Smooth Muscle (TSM). Chest, 1985, 87, 161S.	0.4	1
312	Central and local cholinergic components of histamine-induced bronchoconstriction in dogs. Journal of Applied Physiology, 1985, 58, 443-451.	1.2	42
313	Endogenous prostaglandins modulate histamine-induced contraction in canine tracheal smooth muscle. Journal of Applied Physiology, 1985, 58, 859-868.	1.2	41
314	Tachyphylaxis to inhaled aerosolized histamine in anesthetized dogs. Journal of Applied Physiology, 1985, 59, 1355-1363.	1.2	29
315	Effect of mechanical loading on displacements of chest wall during breathing in humans. Journal of Applied Physiology, 1985, 58, 477-484.	1.2	25
316	Granulocyte depletion and histamine sensitivity. Journal of Applied Physiology, 1984, 57, 923-923.	1.2	0
317	A comparison of the effects of ketotifen and clemastine on cutaneous and airway reactivity to histamine and allergen in atopic asthmatic subjects. Journal of Allergy and Clinical Immunology, 1984, 74, 270-274.	1.5	18
318	Respiratory Muscle Tone and The Control of Functional Residual Capacity. Chest, 1983, 84, 3-4.	0.4	9
319	Effect of Panting Frequency on the Plethysmographic Determination of Thoracic Gas Volume in Chronic Obstructive Pulmonary Disease1–3. The American Review of Respiratory Disease, 1983, 128, 54-59.	2.9	105
320	Mechanical Load and Inspiratory Muscle Action during Induced Asthma. The American Review of Respiratory Disease, 1983, 128, 455-460.	2.9	80
321	Mechanisms of histamine-induced contraction of canine airway smooth muscle. Journal of Applied Physiology, 1983, 55, 22-26.	1.2	44
322	The behaviour of the abdominal muscles during inspiratory mechanical loading. Respiration Physiology, 1982, 50, 63-73.	2.8	73
323	Factors Influencing Pulsus Paradoxus in Asthma. Chest, 1981, 80, 543-549.	0.4	29
324	The Role of Respiratory Muscles in the Hyperinflation of Bronchial Asthma ^{1–} ³ . The American Review of Respiratory Disease, 1980, 121, 441-447.	2.9	189

#	Article	IF	CITATIONS
325	Inspiratory muscle activity during induced hyperinflation. Respiration Physiology, 1980, 39, 303-313.	2.8	28

1

Airway Smooth Muscle in Experimental Models. , 0, , 159-179.