## Abdullah Alsalemi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1232577/publications.pdf Version: 2024-02-01



ARDIIIAH AISAIEMI

| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives. Applied Energy, 2021, 287, 116601.                                   | 5.1  | 264       |
| 2  | A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects. Information Fusion, 2021, 72, 1-21.                                                           | 11.7 | 80        |
| 3  | Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree. Applied Energy, 2020, 267, 114877.                                              | 5.1  | 78        |
| 4  | A Novel Approach for Detecting Anomalous Energy Consumption Based on Micro-Moments and Deep<br>Neural Networks. Cognitive Computation, 2020, 12, 1381-1401.                                             | 3.6  | 76        |
| 5  | Building power consumption datasets: Survey, taxonomy and future directions. Energy and Buildings, 2020, 227, 110404.                                                                                   | 3.1  | 61        |
| 6  | The emergence of explainability of intelligent systems: Delivering explainable and personalized recommendations for energy efficiency. International Journal of Intelligent Systems, 2021, 36, 656-680. | 3.3  | 54        |
| 7  | Smart power consumption abnormality detection in buildings using micromoments and improved<br>Kâ€nearest neighbors. International Journal of Intelligent Systems, 2021, 36, 2865-2894.                  | 3.3  | 51        |
| 8  | Blockchain-based recommender systems: Applications, challenges and future opportunities. Computer<br>Science Review, 2022, 43, 100439.                                                                  | 10.2 | 49        |
| 9  | The Role of Micro-Moments: A Survey of Habitual Behavior Change and Recommender Systems for<br>Energy Saving. IEEE Systems Journal, 2019, 13, 3376-3387.                                                | 2.9  | 48        |
| 10 | Data fusion strategies for energy efficiency in buildings: Overview, challenges and novel orientations. Information Fusion, 2020, 64, 99-120.                                                           | 11.7 | 46        |
| 11 | Achieving Domestic Energy Efficiency Using Micro-Moments and Intelligent Recommendations. IEEE Access, 2020, 8, 15047-15055.                                                                            | 2.6  | 44        |
| 12 | REHAB-C: Recommendations for Energy HABits Change. Future Generation Computer Systems, 2020, 112, 394-407.                                                                                              | 4.9  | 43        |
| 13 | Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction. Applied Energy, 2020, 279, 115872.                                         | 5.1  | 42        |
| 14 | Smart non-intrusive appliance identification using a novel local power histogramming descriptor with an improved k-nearest neighbors classifier. Sustainable Cities and Society, 2021, 67, 102764.      | 5.1  | 37        |
| 15 | Endorsing domestic energy saving behavior using micro-moment classification. Applied Energy, 2019, 250, 1302-1311.                                                                                      | 5.1  | 34        |
| 16 | Smart fusion of sensor data and human feedback for personalized energy-saving recommendations.<br>Applied Energy, 2022, 305, 117775.                                                                    | 5.1  | 32        |
| 17 | Recent trends of smart nonintrusive load monitoring in buildings: A review, open challenges, and future directions. International Journal of Intelligent Systems, 2022, 37, 7124-7179.                  | 3.3  | 31        |
| 18 | An innovative edge-based Internet of Energy solution for promoting energy saving in buildings.<br>Sustainable Cities and Society, 2022, 78, 103571.                                                     | 5.1  | 29        |

Abdullah Alsalemi

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Addressing the challenges of ECMO simulation. Perfusion (United Kingdom), 2018, 33, 568-576.                                                                                                      | 0.5 | 28        |
| 20 | Intelligent Edge-Based Recommender System for Internet of Energy Applications. IEEE Systems Journal, 2022, 16, 5001-5010.                                                                         | 2.9 | 28        |
| 21 | Real-Time Communication Network Using Firebase Cloud IoT Platform for ECMO Simulation. , 2017, , .                                                                                                |     | 27        |
| 22 | An intelligent nonintrusive load monitoring scheme based on 2D phase encoding of power signals.<br>International Journal of Intelligent Systems, 2021, 36, 72-93.                                 | 3.3 | 27        |
| 23 | "l Want to … Change†Micro-moment based Recommendations can Change Users' Energy Habits. , 201                                                                                                     | 9,, | 21        |
| 24 | Smart Sensing and End-Users' Behavioral Change in Residential Buildings: An Edge-Based Internet of<br>Energy Perspective. IEEE Sensors Journal, 2021, 21, 27623-27631.                            | 2.4 | 20        |
| 25 | Revolutionizing ECMO simulation with affordable yet high-Fidelity technology. American Journal of<br>Emergency Medicine, 2018, 36, 1310-1312.                                                     | 0.7 | 19        |
| 26 | Extracorporeal membrane oxygenation simulation-based training: methods, drawbacks and a novel solution. Perfusion (United Kingdom), 2019, 34, 183-194.                                            | 0.5 | 18        |
| 27 | Techno-economic assessment of building energy efficiency systems using behavioral change: A case study of an edge-based micro-moments solution. Journal of Cleaner Production, 2022, 331, 129786. | 4.6 | 18        |
| 28 | A Micro-Moment System for Domestic Energy Efficiency Analysis. IEEE Systems Journal, 2021, 15, 1256-1263.                                                                                         | 2.9 | 17        |
| 29 | A model for predicting room occupancy based on motion sensor data. , 2020, , .                                                                                                                    |     | 15        |
| 30 | Real-time personalised energy saving recommendations. , 2020, , .                                                                                                                                 |     | 15        |
| 31 | Using thermochromism to simulate blood oxygenation in extracorporeal membrane oxygenation.<br>Perfusion (United Kingdom), 2019, 34, 106-115.                                                      | 0.5 | 13        |
| 32 | Data Analytics, Automations, and Micro-Moment Based Recommendations for Energy Efficiency. , 2020, , .                                                                                            |     | 12        |
| 33 | Smart Energy Usage and Visualization Based on Micro-moments. Advances in Intelligent Systems and Computing, 2020, , 557-566.                                                                      | 0.5 | 12        |
| 34 | Interactive visual study for residential energy consumption data. Journal of Cleaner Production, 2022, 366, 132841.                                                                               | 4.6 | 12        |
| 35 | Developing cost-effective simulators for patient management: A modular approach. , 2017, , .                                                                                                      |     | 11        |
| 36 | Design and implementation of a modular ECMO simulator. Qatar Medical Journal, 2017, 2017, .                                                                                                       | 0.2 | 11        |

Abdullah Alsalemi

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Energy Data Visualizations on Smartphones for Triggering Behavioral Change: Novel Vs.<br>Conventional. , 2020, , .                                                             |     | 11        |
| 38 | Using big data and federated learning for generating energy efficiency recommendations.<br>International Journal of Data Science and Analytics, 2023, 16, 353-369.             | 2.4 | 11        |
| 39 | Using thermochromic ink for medical simulations. Qatar Medical Journal, 2017, 2017, 63.                                                                                        | 0.2 | 9         |
| 40 | Boosting Domestic Energy Efficiency Through Accurate Consumption Data Collection. , 2019, , .                                                                                  |     | 9         |
| 41 | Cloud Energy Micro-Moment Data Classification: A Platform Study. , 2020, , .                                                                                                   |     | 9         |
| 42 | Enhancing Clinical Learning Through an Innovative Instructor Application for ECMO Patient Simulators. Simulation and Gaming, 2018, 49, 497-514.                                | 1.2 | 8         |
| 43 | Endorsing Energy Efficiency Through Accurate Appliance-Level Power Monitoring, Automation and Data Visualization. Smart Innovation, Systems and Technologies, 2022, , 603-617. | 0.5 | 8         |
| 44 | A Modular Approach for a Patient Unit for Extracorporeal Membrane Oxygenation Simulator.<br>Membranes, 2021, 11, 424.                                                          | 1.4 | 7         |
| 45 | Reshaping Consumption Habits by Exploiting Energy-Related Micro-moment Recommendations: A Case Study. Communications in Computer and Information Science, 2021, , 65-84.       | 0.4 | 7         |
| 46 | Detection ofÂAppliance-Level Abnormal Energy Consumption inÂBuildings Using Autoencoders<br>andÂMicro-moments. Lecture Notes in Networks and Systems, 2022, , 179-193.         | 0.5 | 7         |
| 47 | CouchDB Based Real-Time Wireless Communication System for Clinical Simulation. , 2018, , .                                                                                     |     | 6         |
| 48 | A High-Realism and Cost-Effective Training Simulator for Extracorporeal Membrane Oxygenation. IEEE<br>Access, 2021, 9, 20893-20901.                                            | 2.6 | 6         |
| 49 | A skills acquisition study on ECMOjo: a screen-based simulator for extracorporeal membrane<br>oxygenation. Perfusion (United Kingdom), 2020, 35, 110-116.                      | 0.5 | 5         |
| 50 | The Emergence of Hybrid Edge-Cloud Computing for Energy Efficiency in Buildings. Lecture Notes in<br>Networks and Systems, 2022, , 70-83.                                      | 0.5 | 5         |
| 51 | Appliance-Level Monitoring withÂMicro-Moment Smart Plugs. Lecture Notes in Networks and Systems,<br>2021, , 942-953.                                                           | 0.5 | 4         |
| 52 | Advanced Thermochromic Ink System for Medical Blood Simulation. Membranes, 2021, 11, 520.                                                                                      | 1.4 | 4         |
| 53 | A Review of Human Circulatory System Simulation: Bridging the Gap between Engineering and Medicine. Membranes, 2021, 11, 744.                                                  | 1.4 | 4         |
| 54 | Appliance identification using a histogram post-processing of 2D local binary patterns for smart grid applications. , 2021, , .                                                |     | 2         |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Assessing Learning Outcomes in Extracorporeal Membrane Oxygenation Simulations With a Novel Simulator and Instructor Application. IEEE Transactions on Learning Technologies, 2021, 14, 568-575. | 2.2 | 2         |
| 56 | IoTâ€based mock oxygenator for extracorporeal membrane oxygenation simulator. Artificial Organs,<br>2022, 46, 2135-2146.                                                                         | 1.0 | 2         |
| 57 | Towards the design and implementation of a human circulatory system for Extracorporeal Membrane<br>Oxygenation simulation. Egyptian Journal of Critical Care Medicine, 2018, 6, 87-89.           | 0.2 | 1         |
| 58 | Preliminary Implementation of the Next Generation Cannulation Simulator. , 2019, , .                                                                                                             |     | 1         |
| 59 | A Thermochromic Ink Heater-cooler Color Change System for Medical Blood Simulation. , 2021, , .                                                                                                  |     | 1         |
| 60 | Towards next generation cannulation simulators. Qatar Medical Journal, 2020, 2019, .                                                                                                             | 0.2 | 0         |
| 61 | Corrections to "A High-Realism and Cost-Effective Training Simulator for Extracorporeal Membrane<br>Oxygenation― IEEE Access, 2022, 10, 64105-64105.                                             | 2.6 | О         |