Michael Krogh Jensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1232573/publications.pdf

Version: 2024-02-01

60 papers 4,353 citations

32 h-index 58 g-index

71 all docs

71 docs citations

times ranked

71

5446 citing authors

#	Article	IF	CITATIONS
1	Supplying plant natural products by yeast cell factories. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100567.	5.9	14
2	Burden Imposed by Heterologous Protein Production in Two Major Industrial Yeast Cell Factories: Identifying Sources and Mitigation Strategies. Frontiers in Fungal Biology, 2022, 3, .	2.0	17
3	RNA-mediated in vivo Directed Evolution in Yeast. Bio-protocol, 2022, 12, e4346.	0.4	O
4	A FAIR-compliant parts catalogue for genome engineering and expression control in Saccharomyces cerevisiae. Synthetic and Systems Biotechnology, 2022, 7, 657-663.	3.7	4
5	Serotonin G Protein-Coupled Receptor-Based Biosensing Modalities in Yeast. ACS Sensors, 2022, 7, 1323-1335.	7.8	13
6	A Reporter System for Cytosolic Protein Aggregates in Yeast. ACS Synthetic Biology, 2021, 10, 466-477.	3.8	9
7	Integrating continuous hypermutation with highâ€throughput screening for optimization of <i>cis,cis</i> à€muconic acid production in yeast. Microbial Biotechnology, 2021, 14, 2617-2626.	4.2	22
8	Transportome-wide engineering of Saccharomyces cerevisiae. Metabolic Engineering, 2021, 64, 52-63.	7.0	27
9	Engineering yeast metabolism for the discovery and production of polyamines and polyamine analogues. Nature Catalysis, 2021, 4, 498-509.	34.4	26
10	A synthetic RNA-mediated evolution system in yeast. Nucleic Acids Research, 2021, 49, e88-e88.	14.5	17
11	Metabolic engineering for plant natural products biosynthesis: new procedures, concrete achievements and remaining limits. Natural Product Reports, 2021, 38, 2145-2153.	10.3	48
12	Engineering G protein-coupled receptor signalling in yeast for biotechnological and medical purposes. FEMS Yeast Research, 2020, 20, .	2.3	31
13	Evolution-guided engineering of small-molecule biosensors. Nucleic Acids Research, 2020, 48, e3-e3.	14.5	92
14	Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds. Frontiers in Bioengineering and Biotechnology, 2020, 8, 594126.	4.1	13
15	Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism. Nature Communications, 2020, 11, 4880.	12.8	137
16	Dietary Change Enables Robust Growth-Coupling of Heterologous Methyltransferase Activity in Yeast. ACS Synthetic Biology, 2020, 9, 3408-3415.	3.8	3
17	Regulatory control circuits for stabilizing long-term anabolic product formation in yeast. Metabolic Engineering, 2020, 61, 369-380.	7.0	17
18	Directed evolution of VanR biosensor specificity in yeast. Biotechnology Notes, 2020, 1, 9-15.	1.2	17

#	Article	IF	Citations
19	Improvement of <i>cis</i> , <i>cis</i> -Muconic Acid Production in <i>Saccharomyces cerevisiae</i> through Biosensor-Aided Genome Engineering. ACS Synthetic Biology, 2020, 9, 634-646.	3.8	50
20	Programmable polyketide biosynthesis platform for production of aromatic compounds in yeast. Synthetic and Systems Biotechnology, 2020, 5, 11-18.	3.7	13
21	High-Resolution Scanning of Optimal Biosensor Reporter Promoters in Yeast. ACS Synthetic Biology, 2020, 9, 218-226.	3.8	26
22	Engineered Reversal of Function in Glycolytic Yeast Promoters. ACS Synthetic Biology, 2019, 8, 1462-1468.	3.8	12
23	Coupling S-adenosylmethionine–dependent methylation to growth: Design and uses. PLoS Biology, 2019, 17, e2007050.	5.6	39
24	Engineered Production of Short-Chain Acyl-Coenzyme A Esters in <i>Saccharomyces cerevisiae</i> ACS Synthetic Biology, 2018, 7, 1105-1115.	3.8	14
25	An Orthogonal and pH-Tunable Sensor-Selector for Muconic Acid Biosynthesis in Yeast. ACS Synthetic Biology, 2018, 7, 995-1003.	3.8	50
26	Assembly and Multiplex Genome Integration of Metabolic Pathways in Yeast Using CasEMBLR. Methods in Molecular Biology, 2018, 1671, 185-201.	0.9	8
27	Design, Engineering, and Characterization of Prokaryotic Ligand-Binding Transcriptional Activators as Biosensors in Yeast. Methods in Molecular Biology, 2018, 1671, 269-290.	0.9	11
28	Modular 5′-UTR hexamers for context-independent tuning of protein expression in eukaryotes. Nucleic Acids Research, 2018, 46, e127.	14.5	15
29	CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9. Metabolic Engineering, 2018, 48, 288-296.	7.0	60
30	Design principles for nuclease-deficient CRISPR-based transcriptional regulators. FEMS Yeast Research, 2018, 18, .	2.3	34
31	Matching NLR Immune Receptors to Autoimmunity in camta3 Mutants Using Antimorphic NLR Alleles. Cell Host and Microbe, 2017, 21, 518-529.e4.	11.0	63
32	System-level perturbations of cell metabolism using CRISPR/Cas9. Current Opinion in Biotechnology, 2017, 46, 134-140.	6.6	25
33	Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies. Microbial Cell Factories, 2017, 16, 46.	4.0	102
34	Lighting up yeast cell factories by transcription factor-based biosensors. FEMS Yeast Research, 2017, 17,	2.3	32
35	Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast. Nature Chemical Biology, 2016, 12, 951-958.	8.0	182
36	EasyCloneâ€MarkerFree: A vector toolkit for markerâ€less integration of genes into <i>Saccharomyces cerevisiae</i> via CRISPRâ€Cas9. Biotechnology Journal, 2016, 11, 1110-1117.	3.5	206

#	Article	IF	CITATIONS
37	Engineering an NADPH/NADP ⁺ Redox Biosensor in Yeast. ACS Synthetic Biology, 2016, 5, 1546-1556.	3.8	66
38	Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Research, 2016, 44, e136-e136.	14.5	99
39	CRISPR/Cas9 advances engineering of microbial cell factories. Metabolic Engineering, 2016, 34, 44-59.	7.0	179
40	Transcriptome and Genome Size Analysis of the Venus Flytrap. PLoS ONE, 2015, 10, e0123887.	2.5	12
41	CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae. Microbial Cell Factories, 2015, 14, 97.	4.0	134
42	Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metabolic Engineering, 2015, 28, 213-222.	7.0	355
43	Development of biosensors and their application in metabolic engineering. Current Opinion in Chemical Biology, 2015, 28, 1-8.	6.1	149
44	CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of <i>in Vivo</i> Assembled DNA Parts in <i>Saccharomyces cerevisiae</i> ACS Synthetic Biology, 2015, 4, 1226-1234.	3.8	148
45	A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in <i>Arabidopsis thaliana</i> . Nucleic Acids Research, 2014, 42, 7681-7693.	14.5	84
46	NAC transcription factor gene regulatory and protein–protein interaction networks in plant stress responses and senescence. IUBMB Life, 2014, 66, 156-166.	3.4	77
47	Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Research, 2014, 15, n/a-n/a.	2.3	59
48	ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene <i>NCED3</i> in <i>Arabidopsis thaliana</i> FEBS Open Bio, 2013, 3, 321-327.	2.3	182
49	Structure, Function and Networks of Transcription Factors Involved in Abiotic Stress Responses. International Journal of Molecular Sciences, 2013, 14, 5842-5878.	4.1	278
50	Ca2+ Induces Spontaneous Dephosphorylation of a Novel P5A-type ATPase. Journal of Biological Chemistry, 2012, 287, 28336-28348.	3.4	17
51	Order by disorder in plant signaling. Trends in Plant Science, 2012, 17, 625-632.	8.8	65
52	Regulation of basal resistance by a powdery mildewâ€induced cysteineâ€rich receptorâ€like protein kinase in barley. Molecular Plant Pathology, 2012, 13, 135-147.	4.2	62
53	Senescence-associated Barley NAC (NAM, ATAF1,2, CUC) Transcription Factor Interacts with Radical-induced Cell Death 1 through a Disordered Regulatory Domain. Journal of Biological Chemistry, 2011, 286, 35418-35429.	3.4	84
54	The <i>Arabidopsis thaliana</i> NAC transcription factor family: structure–function relationships and determinants of ANAC019 stress signalling. Biochemical Journal, 2010, 426, 183-196.	3.7	354

#	Article	IF	CITATIONS
55	NAC genes. Plant Signaling and Behavior, 2010, 5, 907-910.	2.4	36
56	How can we exploit functional genomics approaches for understanding the nature of plant defences? Barley as a case study. European Journal of Plant Pathology, 2008, 121, 257-266.	1.7	8
57	Transcriptional regulation by an NAC (NAM–ATAF1,2–CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards ⟨i⟩Blumeria graminis⟨ i⟩ f. sp. ⟨i⟩hordei⟨ i⟩ in Arabidopsis. Plant Journal, 2008, 56, 867-880.	5.7	210
58	How can we exploit functional genomics approaches for understanding the nature of plant defences? Barley as a case study., 2008,, 257-266.		1
59	The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Molecular Biology, 2007, 65, 137-150.	3.9	136
60	Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization. Biochemical Journal, 2003, 371, 97-108.	3.7	97