List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1230538/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydration kinetics of ternary slag-limestone cements: Impact of water to binder ratio and curing temperature. Cement and Concrete Research, 2022, 151, 106647.	11.0	55
2	Mechanisms of carbonation hydration hardening in Portland cements. Cement and Concrete Research, 2022, 152, 106687.	11.0	75
3	Effect of leaching on the composition of hydration phases during chloride exposure of mortar. Cement and Concrete Research, 2022, 153, 106691.	11.0	13
4	The role of cavitation in drying cementitious materials. Cement and Concrete Research, 2022, 154, 106710.	11.0	11
5	Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	71
6	Report of RILEM TC 267—TRM: Improvement and robustness study of lime mortar strength test for assessing reactivity of SCMs. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	8
7	Report of RILEM TC 267-TRM phase 2: optimization and testing of the robustness of the R3 reactivity tests for supplementary cementitious materials. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	29
8	Effect of sulfate on CO2 binding efficiency of recycled alkaline materials. Cement and Concrete Research, 2022, 157, 106804.	11.0	16
9	Multi-scale strategy to estimate the mechanical and diffusive properties of cementitious materials prepared with CEM II/C-M. Cement and Concrete Composites, 2022, 131, 104537.	10.7	4
10	CO2 Mineralization Methods in Cement and Concrete Industry. Energies, 2022, 15, 3597.	3.1	26
11	Report of RILEM TC 267-TRM phase 3: validation of the R3 reactivity test across a wide range of materials. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	3.1	32
12	Effect of alkali and sulfate on early hydration of Portland cements at high water to cement ratio. Construction and Building Materials, 2022, 345, 128283.	7.2	15
13	Effect of alkalis on enforced carbonation of cement paste: Mechanism of reaction. Journal of the American Ceramic Society, 2021, 104, 1076-1087.	3.8	15
14	Modelling the effect of the cement components fineness on performance and environmental impact of composite cements. Construction and Building Materials, 2021, 276, 122108.	7.2	10
15	Effect of alkalis on products of enforced carbonation of cement paste. Construction and Building Materials, 2021, 291, 123203.	7.2	27
16	New insights into the role of space on the microstructure and the development of strength of multicomponent cements. Cement and Concrete Composites, 2021, 121, 104070.	10.7	11
17	Understanding of the factors slowing down metakaolin reaction in limestone calcined clay cement (LC3) at late ages. Cement and Concrete Research, 2021, 146, 106477.	11.0	49
18	Impact of limestone fineness on cement hydration at early age. Cement and Concrete Research, 2021, 147, 106515.	11.0	69

#	Article	IF	CITATIONS
19	Factors affecting the reactivity of slag at early and late ages. Cement and Concrete Research, 2021, 150, 106604.	11.0	20
20	Combined influence of carbonation and leaching on freeze-thaw resistance of limestone ternary cement concrete. Construction and Building Materials, 2021, 307, 125087.	7.2	11
21	Effect of carbonated cement paste on composite cement hydration and performance. Cement and Concrete Research, 2020, 134, 106090.	11.0	111
22	Kinetics of enforced carbonation of cement paste. Cement and Concrete Research, 2020, 131, 106013.	11.0	93
23	Formation, composition and stability of ye'elimite and iron-bearing solid solutions. Cement and Concrete Research, 2020, 131, 106009.	11.0	22
24	CO2 mineralisation of Portland cement: Towards understanding the mechanisms of enforced carbonation. Journal of CO2 Utilization, 2020, 38, 398-415.	6.8	69
25	Phase assemblage and microstructure of cement paste subjected to enforced, wet carbonation. Cement and Concrete Research, 2020, 130, 105990.	11.0	109
26	Late hydration kinetics: Indications from thermodynamic analysis of pore solution data. Cement and Concrete Research, 2020, 129, 105975.	11.0	53
27	Carbon Capture and Utilization by mineralization of cement pastes derived from recycled concrete. Scientific Reports, 2020, 10, 5614.	3.3	104
28	Advances in understanding ye'elimite-rich cements. Cement and Concrete Research, 2019, 123, 105778.	11.0	91
29	The role of boron during the early hydration of belite ye'elimite ferrite cements. Construction and Building Materials, 2019, 215, 252-263.	7.2	31
30	Structure and reactivity of synthetic CaO-Al2O3-SiO2 glasses. Cement and Concrete Research, 2019, 120, 77-91.	11.0	90
31	Early hydration of ye'elimite: Insights from thermodynamic modelling. Cement and Concrete Research, 2019, 120, 152-163.	11.0	26
32	Development of composite cements characterized by low environmental footprint. Journal of Cleaner Production, 2019, 226, 503-514.	9.3	45
33	Hydration and performance evolution of belite–ye'elimite–ferrite cement. Advances in Cement Research, 2019, 31, 124-137.	1.6	30
34	Hydration reactions and stages of clinker composed mainly of stoichiometric ye'elimite. Cement and Concrete Research, 2019, 116, 120-133.	11.0	65
35	Factors influencing the hydration kinetics of ye'elimite; effect of mayenite. Cement and Concrete Research, 2019, 116, 113-119.	11.0	40
36	Chemical shrinkage of ye'elimite with and without gypsum addition. Construction and Building Materials, 2019, 200, 770-780.	7.2	25

#	Article	IF	CITATIONS
37	Stability of the hydrate phase assemblage in Portland composite cements containing dolomite and metakaolin after leaching, carbonation, and chloride exposure. Cement and Concrete Composites, 2018, 89, 89-106.	10.7	57
38	Effect of sulfate additions on hydration and performance of ternary slag-limestone composite cements. Construction and Building Materials, 2018, 164, 451-462.	7.2	66
39	Influence of calcium and magnesium carbonates on hydration kinetics, hydrate assemblage and microstructural development of metakaolin containing composite cements. Cement and Concrete Research, 2018, 106, 91-102.	11.0	69
40	Relationship between cement composition and the freeze–thaw resistance of concretes. Advances in Cement Research, 2018, 30, 387-397.	1.6	9
41	Limitations of the hydrotalcite formation in Portland composite cement pastes containing dolomite and metakaolin. Cement and Concrete Research, 2018, 105, 1-17.	11.0	94
42	Impact of microstructure on the performance of composite cements: Why higher total porosity can result in higher strength. Cement and Concrete Composites, 2018, 90, 178-192.	10.7	69
43	Chloride-binding capacity of hydrotalcite in cement pastes containing dolomite and metakaolin. Cement and Concrete Research, 2018, 107, 163-181.	11.0	108
44	Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	144
45	Effect of sulfate content on the porosity distribution and resulting performance of composite cements. Construction and Building Materials, 2018, 186, 912-919.	7.2	24
46	Early hydration of SCM-blended Portland cements: A pore solution and isothermal calorimetry study. Cement and Concrete Research, 2017, 93, 71-82.	11.0	145
47	Outcomes of the RILEM round robin on degree of reaction of slag and fly ash in blended cements. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	101
48	Phase assemblage of composite cements. Cement and Concrete Research, 2017, 99, 172-182.	11.0	95
49	Predictive modelling of hydration and mechanical performance of low Ca composite cements: Possibilities and limitations from industrial perspective. Cement and Concrete Research, 2017, 100, 68-83.	11.0	35
50	The effect of glass composition on the reactivity of synthetic glasses. Journal of the American Ceramic Society, 2017, 100, 2553-2567.	3.8	67
51	Portland metakaolin cement containing dolomite or limestone – Similarities and differences in phase assemblage and compressive strength. Construction and Building Materials, 2017, 157, 214-225.	7.2	52
52	Effect of hydration kinetics on properties of compositionally similar binders. Cement and Concrete Research, 2017, 101, 13-24.	11.0	51
53	Effect of retarders on the early hydration of calcium-sulpho-aluminate (CSA) type cements. Cement and Concrete Research, 2016, 84, 62-75.	11.0	130
54	Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cement and Concrete Research, 2016, 85, 1-11.	11.0	375

#	Article	IF	CITATIONS
55	The impact of alumina availability on sulfate resistance of slag composite cements. Construction and Building Materials, 2016, 119, 356-369.	7.2	51
56	Characterization of Fly Ashes by a Novel Method in the Scanning Electron Microscope. , 2016, , 55-64.		0
57	CSA raw mix design: effect on clinker formation and reactivity. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3895-3911.	3.1	61
58	A new quantification method based on SEM-EDS to assess fly ash composition and study the reaction of its individual components in hydrating cement paste. Cement and Concrete Research, 2015, 73, 111-122.	11.0	195
59	Fly ash as an assemblage of model Ca–Mg–Na-aluminosilicate glasses. Cement and Concrete Research, 2015, 78, 263-272.	11.0	104
60	A method to determine the critical moisture level for unsaturated transport of ions. Materials and Structures/Materiaux Et Constructions, 2015, 48, 53-65.	3.1	4
61	Influence of slag composition on the hydration of alkali-activated slags. Journal of Sustainable Cement-Based Materials, 2015, 4, 85-100.	3.1	53
62	Reactivity and phase composition of Ca 2 SiO 4 binders made by annealing of alpha-dicalcium silicate hydrate. Cement and Concrete Research, 2015, 67, 131-137.	11.0	38
63	Experimental investigation and modeling of hydration and performance evolution of fly ash cement. Materials and Structures/Materiaux Et Constructions, 2014, 47, 1259-1269.	3.1	36
64	The role of the alumina content of slag, plus the presence of additional sulfate on the hydration and microstructure of Portland cement-slag blends. Cement and Concrete Research, 2014, 66, 91-101.	11.0	135
65	Effect of CaMg(CO3)2 on hydrate assemblages and mechanical properties of hydrated cement pastes at 40°C and 60°C. Cement and Concrete Research, 2014, 65, 21-29.	11.0	66
66	Effect of raw mix design and of clinkering process on the formation and mineralogical composition of (ternesite) belite calcium sulphoaluminate ferrite clinker. Cement and Concrete Research, 2014, 59, 87-95.	11.0	134
67	The effect of temperature on the hydration of composite cements containing limestone powder and fly ash. Materials and Structures/Materiaux Et Constructions, 2012, 45, 1101-1114.	3.1	73
68	Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part II: Effect of Al2O3. Cement and Concrete Research, 2012, 42, 74-83.	11.0	406
69	Hydration of a low-alkali CEM III/B–SiO2 cement (LAC). Cement and Concrete Research, 2012, 42, 410-423.	11.0	147
70	Hydration Degree of Alkaliâ€Activated Slags: A ²⁹ <scp><scp>Si</scp> NMR</scp> Study. Journal of the American Ceramic Society, 2011, 94, 4541-4547.	3.8	120
71	Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research, 2011, 41, 279-291.	11.0	897
72	Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cement and Concrete Research, 2011, 41, 301-310.	11.0	720

#	Article	IF	CITATIONS
73	Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO. Cement and Concrete Research, 2011, 41, 955-963.	11.0	534
74	Quantification of the degree of reaction of fly ash. Cement and Concrete Research, 2010, 40, 1620-1629.	11.0	216
75	Numerical and analytical effective elastic properties of degraded cement pastes. Cement and Concrete Research, 2009, 39, 902-912.	11.0	29
76	Relation of expansion due to alkali silica reaction to the degree of reaction measured by SEM image analysis. Cement and Concrete Research, 2007, 37, 1206-1214.	11.0	113
77	Statistical performances of various deterministic and stochastic models for rainfall series disaggregation. Atmospheric Research, 2005, 77, 152-175.	4.1	33
78	CO2 mineralization of demolished concrete wastes into a supplementary cementitious material – a new CCU approach for the cement industry. RILEM Technical Letters, 0, 6, 53-60.	0.0	37