Agnieszka Korzeniowska-Kowal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1230293/publications.pdf

Version: 2024-02-01

Agnieszka

#	Article	IF	CITATIONS
1	Global phylogeography and evolutionary history of Shigella dysenteriae type 1. Nature Microbiology, 2016, 1, 16027.	13.3	65
2	High Prevalence of Resistance to Fluoroquinolones and Tetracycline <i>Campylobacter</i> Spp. Isolated from Poultry in Poland. Microbial Drug Resistance, 2018, 24, 314-322.	2.0	49
3	Structure of the sialic acid-containing O-specific polysaccharide from Salmonella enterica serovar Toucra O48 lipopolysaccharide. FEBS Journal, 2000, 267, 3160-3167.	0.2	26
4	Structural analysis of the Lactobacillus rhamnosus strain KL37C exopolysaccharide. Carbohydrate Research, 2003, 338, 605-609.	2.3	26
5	Elizabethkingia miricola as an opportunistic oral pathogen associated with superinfectious complications in humoral immunodeficiency: a case report. BMC Infectious Diseases, 2017, 17, 763.	2.9	25
6	Isolation of Staphylococcus microti from milk of dairy cows with mastitis. Veterinary Microbiology, 2016, 182, 163-169.	1.9	24
7	Identification of Yersinia enterocolitica isolates from humans, pigs and wild boars by MALDI TOF MS. BMC Microbiology, 2018, 18, 86.	3.3	20
8	Application of Routine Diagnostic Procedure, VITEK 2 Compact, MALDI-TOF MS, and PCR Assays in Identification Procedure of Bacterial Strain with Ambiguous Phenotype. Current Microbiology, 2016, 72, 570-582.	2.2	19
9	Molecular Routes to Specific Identification of the Lactobacillus Casei Group at the Species, Subspecies and Strain Level. International Journal of Molecular Sciences, 2020, 21, 2694.	4.1	18
10	Efficacy of MALDI-TOF mass spectrometry as well as genotypic and phenotypic methods in identification of staphylococci other than <i>Staphylococcus aureus</i> isolated from intramammary infections in dairy cows in Poland. Journal of Veterinary Diagnostic Investigation, 2019, 31, 523-530.	1.1	15
11	Structure of an abequose-containing O-polysaccharide from Citrobacter freundii O22 strain PCM 1555. Carbohydrate Research, 2009, 344, 1724-1728.	2.3	13
12	Comparison of the phylogenetic analysis of PFGE profiles and the characteristic of virulence genes in clinical and reptile associated Salmonella strains. BMC Veterinary Research, 2019, 15, 312.	1.9	13
13	Reptiles as a Source of Salmonella O48—Clinically Important Bacteria for Children: The Relationship Between Resistance to Normal Cord Serum and Outer Membrane Protein Patterns. Microbial Ecology, 2011, 61, 41-51.	2.8	11
14	Structure of the O-polysaccharide of Hafnia alvei strain PCM 1189 that has hexa- to octasaccharide repeating units owing to incomplete glucosylation. Carbohydrate Research, 2005, 340, 263-270.	2.3	10
15	Structure of a phosphoethanolamine-containing O-polysaccharide ofCitrobacter freundiistrain PCM 1443 from serogroup O39 and its relatedness to theKlebsiella pneumoniaeO1 polysaccharide. FEMS Immunology and Medical Microbiology, 2008, 53, 60-64.	2.7	9
16	Structure of the glycerol phosphate-containing O-specific polysaccharide and serological studies on the lipopolysaccharides ofCitrobacter werkmaniiPCM 1548 and PCM 1549 (serogroup O14). FEMS Immunology and Medical Microbiology, 2008, 54, 255-262.	2.7	9
17	Re-classification within the serogroups O3 and O8 of Citrobacter strains. BMC Microbiology, 2017, 17, 169.	3.3	9
18	Structure of the O-polysaccharide from the lipopolysaccharide of Hafnia alvei strain PCM 1546. Carbohydrate Research, 2003, 338, 2153-2158.	2.3	8

Agnieszka

#	Article	IF	CITATIONS
19	Passive blood anaphylaxis: subcutaneous immunoglobulins are a cause of ongoing passive anaphylactic reaction. Allergy, Asthma and Clinical Immunology, 2017, 13, 41.	2.0	7
20	Cloacal Gram-Negative Microbiota in Free-Living Grass Snake Natrix natrix from Poland. Current Microbiology, 2020, 77, 2166-2171.	2.2	7
21	Proteomicsâ€based identification of orchid-associated bacteria colonizing the Epipactis albensis, E. helleborine and E. purpurata (Orchidaceae, Neottieae). Saudi Journal of Biological Sciences, 2021, 28, 4029-4038.	3.8	7
22	Protocol of proceedings with <i>Fusobacterium nucleatum</i> and optimization of ABTS method for detection of reactive oxygen species. Future Microbiology, 2020, 15, 259-271.	2.0	6
23	Immunochemical studies of the lipopolysaccharides of Hafnia alvei PCM 1219 and other strains with the O-antigens containing D-glucose 1-phosphate and 2-deoxy-2-[(R)-3-hydroxybutyramido]-D-glucose. Archivum Immunologiae Et Therapiae Experimentalis, 2008, 56, 347-352.	2.3	4
24	Characterization of a genetically distinct subpopulation of Staphylococcus haemolyticus isolated from milk of cows with intramammary infections. Veterinary Microbiology, 2018, 214, 28-35.	1.9	4
25	An analysis of the population of Cryptococcus neoformans strains isolated from animals in Poland, in the years 2015–2019. Scientific Reports, 2021, 11, 6639.	3.3	4
26	The Phylogenetic Structure of Reptile, Avian and Uropathogenic Escherichia coli with Particular Reference to Extraintestinal Pathotypes. International Journal of Molecular Sciences, 2021, 22, 1192.	4.1	3
27	Antibodies against Escherichia coli O24 and O56 O-Specific Polysaccharides Recognize Epitopes in Human Glandular Epithelium and Nervous Tissue. PLoS ONE, 2015, 10, e0129492.	2.5	2
28	Prevalence, Genetic Structure, and Antifungal Susceptibility of the Cryptococcus neoformans/C. gattii Species Complex Strains Collected from the Arboreal Niche in Poland. Pathogens, 2022, 11, 8.	2.8	2
29	Structure of a new 2-deoxy-2-[(R)-3-hydroxybutyramido]-d-glucose-containing O-specific polysaccharide from the lipopolysaccharide of Citrobacter gillenii PCM 1542. Carbohydrate Research, 2002, 337, 1541-1546.	2.3	1
30	Substitution pattern of 3-deoxy-d-manno-oct-2-ulosonic acid in bacterial lipopolysaccharides investigated by methylation analysis of whole LPS. Carbohydrate Research, 2003, 338, 2679-2686.	2.3	1
31	Detection of ureolytic activity of bacterial strains isolated from entomopathogenic nematodes using infrared spectroscopy. Journal of Basic Microbiology, 2016, 56, 922-928.	3.3	1
32	Game animals as a reservoir of rarely recorded opportunistic bacteria. Postepy Higieny I Medycyny Doswiadczalnej, 2019, 73, 887-897.	0.1	1
33	Post hoc analysis of fecal samples from responders and non-responders to Lactobacillus reuteri DSM 17938 intervention. Acta Biochimica Polonica, 2020, 67, 393-399.	0.5	1